応用数学Ⅱ

科目基礎情報

学校 群馬工業高等専門学校 開講年度 平成29年度 (2017年度)
授業科目 応用数学Ⅱ
科目番号 0020 科目区分 専門 / 必修
授業形態 授業 単位の種別と単位数 履修単位: 2
開設学科 電子情報工学科 対象学年 4
開設期 通年 週時間数 2
教科書/教材
担当教員 谷口 正,福島 博

到達目標

複素関数論とフーリエ解析を通して数学的理論の成り立ちを学ぶ。
実際の計算例が正確に解けるようになる。

ルーブリック

理想的な到達レベルの目安標準的な到達レベルの目安未到達レベルの目安
評価項目1複素関数について理論の成り立ちが理解されていて計算問題が解ける。複素関数の計算問題が正確に解ける。複素関数の計算問題が解けない。
評価項目2複素積分について理論の成り立ちが理解されていて計算問題を解ける。複素積分の計算問題が正確に解ける。複素積分の計算問題が解けない。
評価項目3フーリエ級数とフーリエ変換の理論が理解されていて計算問題が解ける。フーリエ級数とフーリエ変換の計算問題が正確に解ける。フーリエ級数とフーリエ変換の計算問題が解けない。

学科の到達目標項目との関係

教育方法等

概要:
3年まで学習した数学を基礎として、複素関数とフーリエ解析を学習する。
主として正則関数、複素積分、コーシーの積分定理、留数定理、フーリエ級数、フーリエ変換を修得し、
工学に適用できる数学的スキルを学ぶ。
授業の進め方・方法:
定理・公式の成り立ちを丁寧に解説し、問題例を詳しく説明する。
さらに問題演習を行わせる。
注意点:

授業計画

授業内容 週ごとの到達目標
前期
1stQ
1週 ガイダンス 複素関数論を学ぶ意義を理解できる。
2週 複素数と極形式 複素数とガウス平面が理解できる。
3週 絶対値と偏角 絶対値と偏角の計算ができる。
4週 複素関数 複素関数の意味が理解できる。
5週 正則関数 正則関数の定義が理解できる。
6週 コーシー・リーマンの関係式 コーシー・リーマンの関係式の証明が理解できて計算問題が解ける。
7週 練習問題 章末問題や問題集が解ける。
8週 中間試験
2ndQ
9週 逆関数 逆関数が計算できる。
10週 複素積分 複素積分の意味が理解できる。
11週 複素積分 複素積分の計算ができる。
12週 コーシーの積分定理 コーシーの積分定理が理解できる。
13週 コーシーの積分定理 コーシーの積分定理が計算できる。
14週 コーシーの積分定理の応用 コーシーの積分定理の応用が理解できる。
15週 コーシーの積分定理の応用 コーシーの積分定理の応用が計算できる。
16週 練習問題 章末問題や問題集が解ける。
後期
3rdQ
1週 コーシーの積分表示 コーシーの積分表示の意味が理解できて計算できる。
2週 リュービルの定理 リュービルの定理の証明が理解できる。
3週 数列と級数 実数の数列と級数との違いが理解できる。
4週 テーラー展開とローラン展開 テーラー展開とローラン展開の計算ができる。
5週 孤立特異点と留数 孤立特異点と留数の意味が理解できる。
6週 孤立特異点と留数 孤立特異点と留数の計算ができる。
7週 留数定理 留数定理の意味が理解でき、計算ができる。
8週 中間試験
4thQ
9週 フーリエ級数 フーリエ級数の計算ができる。
10週 フーリエ級数の収束定理 フーリエ級数の収束定理の意味が理解できる。
11週 複素フーリエ級数とフーリエ変換 複素フーリエ級数からフーリエ変換が定義できる。
12週 フーリエ変換 フーリエ変換の計算ができる。
13週 フーリエの積分定理 フーリエの積分定理が理解できる。
14週 フーリエ変換の性質と公式 フーリエ変換の性質が証明できる。
15週 フーリエ級数と偏微分方程式 熱伝導方程式が解ける。
16週 フーリエ変換と偏微分方程式 熱伝導方程式が解ける。

モデルコアカリキュラムの学習内容と到達目標

分類分野学習内容学習内容の到達目標到達レベル授業週
基礎的能力数学数学数学整式の加減乗除の計算ができる。3
公式等を利用して因数分解ができる。3
分数式の加減乗除の計算ができる。3
実数・絶対値の意味を理解し、絶対値の基本的な計算ができる。3
平方根の基本的な計算ができる(分母の有理化も含む)。3
複素数の相等を理解し、その加減乗除の計算ができる。3
2次方程式を解くことができる(解の公式も含む)。3
因数分解を利用して、基本的な高次方程式を解くことができる。3
基本的な連立方程式を解くことができる。具体的には、1次式と2次式の連立方程式を解くことができる。3
基本的な無理方程式・分数方程式を解くことができる。3
基本的な1次不等式を解くことができる。3
1元連立1次不等式を解くことができる。3
基本的な2次不等式を解くことができる。3
恒等式と方程式の違いを理解している。3
2次関数の性質を理解し、グラフをかくことができ、最大値・最小値を求めることができる。3
分数関数の性質を理解し、グラフをかくことができる。3
基本的な関数の逆関数を求め、そのグラフをかくことができる。3
無理関数の性質を理解し、グラフをかくことができる。3
関数のグラフと座標軸との共有点を求めることができる。3
累乗根の意味を理解し、指数法則を拡張し、計算に利用することができる。3
指数関数の性質を理解し、グラフをかくことができる。3
指数関数を含む基本的な方程式を解くことができる。3
対数を利用した計算ができる。3
対数関数の性質を理解し、グラフをかくことができる。3
対数関数を含む基本的な方程式を解くことができる。3
三角比を理解し、三角関数表を用いて三角比を求めることができる。一般角の三角関数の値を求めることができる。3
角を弧度法で表現することができる。3
三角関数の性質を理解し、グラフをかくことができる。3
加法定理および加法定理から導出される公式等を使うことができる。3
三角関数を含む基本的な方程式を解くことができる。3
2点間の距離を求めることができる。3
内分点の座標を求めることができる。3
通る点や傾きから直線の方程式を求めることができる。3
2つの直線の平行・垂直条件を理解している。3
基本的な円の方程式を求めることができる。3
積の法則と和の法則の違いを理解している。3
順列・組合せの基本的な計算ができる。3
等差数列・等比数列の一般項やその和を求めることができる。3
総和記号を用いた基本的な数列の和を計算することができる。3
いろいろな数列の極限を求めることができる(不定形の意味も理解している)。3
無限等比級数等の基本的な級数の収束・発散を調べ、その和を求めることができる。3
ベクトルの定義を理解し、ベクトルの基本的な計算(和・差・定数倍)ができ、大きさを求めることができる。3
平面および空間ベクトルの成分表示ができ、基本的な計算ができる。3
平面および空間ベクトルの内積を求めることができる。3
ベクトルの平行・垂直条件を利用することができる。3
空間内の直線・平面・球の方程式を求めることができる(必要に応じてベクトル方程式も扱う)。3
行列の定義を理解している。3
行列の和・差・数との積の計算ができる。3
行列の積の計算ができる。3
逆行列の定義を理解し、2次の正方行列の逆行列を求めることができる。3
行列式の定義および性質を理解し、基本的な行列式の値を求めることができる。3
線形変換の定義を理解している。3
合成変換と逆変換を求めることができる。3
平面内の回転を表す線形変換を求めることができる。3
いろいろな関数の極限を求めることができる。3
微分係数の意味を理解し、求めることができる。3
導関数の定義を理解している。3
積・商の導関数の公式を使うことができる。3
合成関数の導関数を求めることができる。3
三角関数・指数関数・対数関数の導関数を求めることができる。3
逆三角関数を理解している。逆三角関数の導関数を求めることができる。3
関数の増減表をかいて、極値を求め、グラフの概形をかくことができる。3
関数の最大値・最小値を求めることができる。3
基本的な関数の接線の方程式を求めることができる。3
2次以上の導関数を求めることができる。3
関数の媒介変数表示を理解し、その導関数を計算できる。3
不定積分の定義を理解している。3
置換積分および部分積分を用いて、不定積分を求めることができる。3
定積分の定義を理解している(区分求積法)。3
微積分の基本定理を理解している。3
定積分の基本的な計算ができる。3
置換積分および部分積分を用いて、定積分を求めることができる。3
分数関数・無理関数・三角関数・指数関数・対数関数の不定積分・定積分の計算ができる。3
基本的な曲線で囲まれた図形の面積を求めることができる。3
いろいろな曲線の長さを求めることができる。3
基本的な立体の体積を求めることができる。3
2変数関数の定義域やグラフを理解している。3
いろいろな関数の偏導関数を求めることができる。3
合成関数の偏微分法を利用した計算ができる。3
基本的な関数について、2次までの偏導関数を計算できる。3
偏導関数を用いて、基本的な2変数関数の極値を求めることができる。3
2重積分の定義を理解している。3
2重積分を累次積分になおして計算することができる。3
極座標に変換することによって2重積分を計算することができる。3
2重積分を用いて、基本的な立体の体積を求めることができる。3
微分方程式の意味を理解している。3
基本的な変数分離形の微分方程式を解くことができる。3
基本的な1階線形微分方程式を解くことができる。3
定数係数2階斉次線形微分方程式を解くことができる。3
いろいろな確率を求めることができる。余事象の確率、確率の加法定理、排反事象の確率を理解している。3
条件付き確率を求めることができる。確率の乗法定理、独立事象の確率を理解している。3
1次元および2次元のデータを整理して、平均・分散・標準偏差・相関係数・回帰曲線を求めることができる。3

評価割合

試験発表相互評価態度ポートフォリオその他合計
総合評価割合80000020100
基礎的能力1000002030
専門的能力600000060
分野横断的能力100000010