概要:
本授業は,企業で航空機開発の業務を担当していた教員が,その経験を活かし,機械製品の開発・設計現場で必要とされるComputational Fluid Dynamics (CFD)の基礎理論について講義形式で授業を行うものである.
授業の進め方・方法:
授業は基本的に講義の形式をとり,適宜レポートを課す.
授業内容は授業計画に示す通り.
注意点:
数理モデルを単に導出するのではなく,各項の意味と役割を読み取る事が重要である.また,支配方程式を差分方程式に変換する際に生じる打切り誤差について,十分に理解することが肝要である.不明な点がないよう各自しっかり復習し,わからなければ随時質問に訪れること.
分類 | 分野 | 学習内容 | 学習内容の到達目標 | 到達レベル | 授業週 |
専門的能力 | 分野別の専門工学 | 機械系分野 | 熱流体 | 流体の定義と力学的な取り扱い方を理解し、適用できる。 | 4 | |
流体の性質を表す各種物理量の定義と単位を理解し、適用できる。 | 4 | |
ニュートンの粘性法則、ニュートン流体、非ニュートン流体を説明できる。 | 4 | |
絶対圧力およびゲージ圧力を説明できる。 | 4 | |
パスカルの原理を説明できる。 | 4 | |
液柱計やマノメーターを用いた圧力計測について問題を解くことができる。 | 4 | |
平面や曲面に作用する全圧力および圧力中心を計算できる。 | 4 | |
物体に作用する浮力を計算できる。 | 4 | |
定常流と非定常流の違いを説明できる。 | 4 | |
流線と流管の定義を説明できる。 | 4 | |
連続の式を理解し、諸問題の流速と流量を計算できる。 | 4 | |
オイラーの運動方程式を説明できる。 | 4 | |
ベルヌーイの式を理解し、流体の諸問題に適用できる。 | 4 | |
運動量の法則を理解し、流体が物体に及ぼす力を計算できる。 | 4 | |
層流と乱流の違いを説明できる。 | 4 | |
レイノルズ数と臨界レイノルズ数を理解し、流れの状態に適用できる。 | 4 | |
ダルシー・ワイスバッハの式を用いて管摩擦損失を計算できる。 | 4 | |
ムーディー線図を用いて管摩擦係数を求めることができる。 | 4 | |
境界層、はく離、後流など、流れの中に置かれた物体の周りで生じる現象を説明できる。 | 4 | |
抗力について理解し、抗力係数を用いて抗力を計算できる。 | 4 | |
揚力について理解し、揚力係数を用いて揚力を計算できる。 | 4 | |
理想気体の圧力、体積、温度の関係を、状態方程式を用いて説明できる。 | 4 | |