到達目標
1.学生は、振動現象の基本を理解し、固有振動数や減衰の効果を説明できる。
2.学生は、1自由度振動系の自由振動の応答を求めることが出来る。
3.学生は、1自由振動系の強制振動の応答曲線を求めることが出来る。
4.学生は、2自由度振動系の固有振動数と振動モードを求めることが出来る。
ルーブリック
| 理想的な到達レベルの目安 | 標準的な到達レベルの目安 | 未到達レベルの目安 |
評価項目1 | 1自由度系の自由振動の式を導出でき、その式の意味を説明できる。 | 1自由度系の自由振動の式を導出できる。 | 1自由度系の自由振動の式を導出できない。 |
評価項目2 | 1自由度系の強制振動の応答曲線を求めることができ、その曲線の意味を説明できる。 | 1自由度系の強制振動の応答曲線の意味を説明できる。 | 1自由度系の強制振動の応答曲線が何を表しているのか理解できない。 |
評価項目3 | 2自由度系の固有振動数と振動モードを求めることができ、その意味を説明できる。 | 2自由度系の固有振動数と振動モードを求めることができる。 | 2自由度系の固有振動数と振動モードを求めることができない。 |
学科の到達目標項目との関係
教育方法等
概要:
機械力学は、主に、物体の運動に関して学ぶ科目である。特に、この科目で取り上げる振動現象は様々な分野で問題となっており、その原理を理解することが重要である。また、強制振動における応答曲線は、制御工学において周波数応答を学ぶ上で理解を助ける知識となるので、修得すること。
授業の進め方・方法:
1.授業方法は講義を中心とし、演習問題を出す。
2.定期的に課題レポートを課すので、必ず提出すること。
注意点:
1.微分方程式の知識が必要となります。数学の授業より先に取り扱う部分については授業中に説明します。
2.運動方程式は制御工学Ⅰ(4年生)を学ぶ上で必要な知識なので、必ず理解しておくこと。
3.授業中は話をよく聞き、積極的に授業に参加すること。
4.理解を深めるため、レポートの課題に積極的に取り組むこと。
授業の属性・履修上の区分
授業計画
|
|
週 |
授業内容 |
週ごとの到達目標 |
後期 |
3rdQ |
1週 |
振動の基礎(1) |
様々な振動現象が存在することを理解する。(MCC)
|
2週 |
振動の基礎(2) |
調和振動の振幅、周期、位相をグラフから求められる。また、ばねの合成方法、減衰力と説明できる。(MCC)
|
3週 |
振動系のモデル化 |
運動の自由度を理解し、振動系のモデル化ができる。
|
4週 |
非減衰1自由度振動系の自由振動 |
非減衰1自由度振動系の運動方程式をもとに、自由振動を求めることができる。(MCC)
|
5週 |
減衰1自由度振動系の自由振動 |
減衰1自由度振動系の運動方程式をもとに、自由振動を求めることができる。(MCC)
|
6週 |
非減衰1自由度振動系の強制振動 |
非減衰1自由度振動系の振幅と位相の式を求め、強制振動の式を求めることができる。
|
7週 |
減衰1自由度振動系の強制振動 |
減衰1自由度振動系の振幅と位相の式を求め、強制振動の式を求めることができる。
|
8週 |
中間試験 |
|
4thQ |
9週 |
中間試験の解説と復習 |
中間試験の解説を行い、間違えたところを確認し復習する。
|
10週 |
1自由度振動系の強制振動(周波数応答曲線) |
1自由度振動系の振幅比と位相差の応答曲線を描くことができる。 振幅比より共振周波数と振幅比の最大値を求め、半値幅法により減衰比を求めることが出来る
|
11週 |
振動の絶縁(1) |
振動絶縁の考え方を理解し、加振力から基礎に作用する力までの振幅比を求め、振動絶縁のパラメータ設計ができる。
|
12週 |
振動の絶縁(2) |
振動絶縁の考え方を理解し、基礎変位から対象の変位までの振幅比を求め、基礎絶縁のパラメータ設計ができる。
|
13週 |
2自由度系の振動(1) |
非減衰2自由度系の固有角振動数と振動モードを求めることができる。
|
14週 |
2自由度系の振動(2) |
非減衰2自由度振動系の自由振動を求めることができる。
|
15週 |
定期試験 |
定期試験
|
16週 |
定期試験の解説と復習 |
定期試験の解説を行い、間違えたところを確認し復習する。
|
モデルコアカリキュラムの学習内容と到達目標
分類 | 分野 | 学習内容 | 学習内容の到達目標 | 到達レベル | 授業週 |
専門的能力 | 分野別の専門工学 | 機械系分野 | 力学 | 振動の種類および調和振動を説明できる。 | 3 | 後1,後2 |
不減衰系の自由振動を運動方程式で表し、系の運動を説明できる。 | 3 | 後4 |
減衰系の自由振動を運動方程式で表し、系の運動を説明できる。 | 3 | 後5 |
調和外力による減衰系の強制振動を運動方程式で表し、系の運動を説明できる。 | 3 | 後7 |
調和変位による減衰系の強制振動を運動方程式で表し、系の運動を説明できる。 | 3 | 後12 |
評価割合
| 試験 | 発表 | 相互評価 | 態度 | 課題レポート | その他 | 合計 |
総合評価割合 | 70 | 0 | 0 | 0 | 30 | 0 | 100 |
基礎的能力 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
専門的能力 | 70 | 0 | 0 | 0 | 30 | 0 | 100 |
分野横断的能力 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |