コンピュータを用いて、1)対象とするシステムのふるまいを数理的にモデル化・予測し、2)離散時間の信号を適切に処理し、3)対象とするシステムの特性を変えて保つ ための、離散時間の計測制御の知識と技能を身につける。
概要:
ディジタル制御とディジタルフィルタの内容を、応用にも重点を置きながら実践的に学習する。
本科目の学修内容は、たとえば、家電や自動車からプラントや社会システムまでの幅広い計測制御に用いられる制御工学の内容をコンピュータを用いて(離散時間で)実践する際に、効力を発揮する。
授業の進め方・方法:
原則毎回、講義資料を配付する。授業はこの講義資料に沿って行い、課題に取り組む際の資料ともなるため、A4のファイルを用意して整理すること。整理することができないと、本科目の履修は難しくなる。
原則毎回、5問の課題が出る。授業時間の1/6~1/2程度で講義を行い、残りの時間で課題に手を付けることができる。
質問があれば、授業時間内や授業時間外に担当教員まで積極的に申し出ること。
注意点:
課題は締め切りまでに遅滞なく提出することが理想的である。課題点の評価は高くはないが、課題に取り組むことができないと事実上試験問題に取り組むことが困難になる。
より効率的な理解のためには、ScilabやMaximaなどのソフトウェアを自主的に併用することを勧める。
|
|
週 |
授業内容 |
週ごとの到達目標 |
前期 |
1stQ |
1週 |
【第1章:離散時間入門】 「ガイダンス」 「離散時間入門」 ○なぜ離散化が必要か ○連続時間の制御と離散時間の制御の比較 ○ディジタル制御の構成方法 ○制御システムの例 ☆課題(数学基礎の復習) |
□連続時間と離散時間における制御上の差異の概要について説明することができる。 □数学的技能として漸化式(差分方程式)、行列の逆行列や固有値、部分分数分解などを扱うことができる。
|
2週 |
【第2章:離散時間信号とZ変換】 「サンプリング定理とADC/DAC」 ○離散時間の標本化 ○サンプリング定理と標本化関数 ○A/D変換器 ○D/A変換器 ☆課題(サンプリング定理) |
□サンプリング定理について、人にわかるように説明することができる。 □A/D変換器とD/A変換器の入出力信号について、どのような違いがあるか、それぞれ説明することができる。
|
3週 |
「システムの表現方法」 ○線形時不変(LTI)システム ○連続時間と離散時間の伝達関数 ○連続時間と離散時間の状態空間表現 ○一般化プラント ○例題:バネマスダンパ系の伝達関数と状態空間表現 ☆課題(伝達関数と状態空間表現) |
□伝達関数と状態空間表現の違いについて説明することができる。 □2次系の伝達関数と状態空間表現を求めることができる。
|
4週 |
「Z変換」 ○制御工学において用いる変換の俯瞰 ○Z変換の定義式 ○演算子zの意味 ○基本的関数のZ変換 ○インパルス信号(デルタ関数)の違い ☆課題(Z変換) |
□連続時間の計測制御におけるラプラス変換とフーリエ変換が、離散時間の計測制御におけるZ変換と離散フーリエ変換に対応することを知る。 □Z変換の定義式や基本的関数のZ変換を利用して、簡単な関数のZ変換を求めることができる。 □ディラックのデルタ関数とクロネッカのデルタ関数の違いを説明することができる。
|
5週 |
「Z変換の性質と逆Z変換」 ○単位時間遅れのZ変換 ○単位時間進みのZ変換 ○指数関数の積のZ変換 ○畳み込み公式 ○初期値定理・最終値定理 ○逆Z変換(数列を使う方法) ○逆Z変換(部分分数分解を使う方法) ☆課題(Z変換の性質) |
□Z変換の諸性質を利用して、簡単な関数のZ変換を求めることができる。 □簡単な関数の逆Z変換を求めることができる。
|
6週 |
「逆変換と留数」 ○留数を用いた ラプラス変換のZ変換 ○留数を用いた 逆Z変換 ☆課題(逆Z変換) |
□留数定理を利用してラプラス変換のZ変換を求めることができる。 □留数定理を利用して逆Z変換を求めることができる。
|
7週 |
「前期中間試験に向けた過去問演習」 |
□いままでの学修内容で理解が不足していたところを、演習等によって自ら見いだし、改善に向けて取り組むことができる。
|
8週 |
「前期中間試験」 |
いままでの授業の内容を理解あるいは説明できる。たとえば: □A/D変換とD/A変換に関わるサンプリング定理について実用上の計算を行うことができる。 □Z変換を用いて基礎的な数式を処理することができる。
|
2ndQ |
9週 |
【第3章:離散時間システム】 「システムの離散化」 ○状態方程式の離散化 ○状態方程式から伝達関数を求める方法 ○伝達関数の離散化 ☆課題(システムの離散化) |
□連続時間の状態空間表現で表されるシステムについて、離散時間の状態空間表現を求めることができる。 □離散時間の状態空間表現で表されるシステムについて、パルス伝達関数を求めることができる。 □伝達関数で表されるシステムについて、パルス伝達関数を求めることができる。
|
10週 |
「応答」 ○時間応答の導出方法 ○インパルス応答の導出方法 ○ステップ応答の導出方法 ☆課題(応答) |
□パルス伝達関数で表されるシステムについて、単位インパルス応答を求めることができる。 □パルス伝達関数で表されるシステムについて、単位ステップ応答を求めることができる。
|
11週 |
「定常偏差・周波数特性」 ○定常偏差の導出方法 ○周波数特性の導出方法 ☆課題(定常偏差・周波数特性) |
□簡単な閉ループシステムについて、定常偏差を求めることができる。 □パルス伝達関数で表されるシステムについて、周波数特性を求めることができる。
|
12週 |
「安定性」 ○漸近安定とBIBO安定 ○連続時間の場合との違い ○A)パルス伝達関数の極を求める方法 ○B)A行列の固有値を求める方法 ○C)A行列の行列式と固有値を求める方法 ☆課題(安定性) |
□パルス伝達関数で表されるシステムの安定性を判別することができる。 □状態空間表現で表されるシステムの安定性を判別することができる。
|
13週 |
○D)ジュリーの判別法 ○E)双一次変換を用いた判別法 ○F)リアプノフ方程式を用いた判別法 ☆課題(安定性) |
□パルス伝達関数で表されるシステムの安定性を判別することができる。 □状態空間表現で表されるシステムの安定性を判別することができる。
|
14週 |
「可制御性・可観測性と座標変換」 ○可制御性の判別 ○可観測性の判別 ○可制御正準形 ○対角正準形 ☆課題(可制御性)
|
□状態空間表現で表されるシステムの可制御性を判別することができる。 □状態空間表現で表されるシステムの可観測性を判別することができる。 □状態空間表現で表されるシステムについて、可制御正準形を求めることができる。 □状態空間表現で表されるシステムについて、対角正準形を求めることができる。
|
15週 |
「前期定期試験に向けた過去問演習」 |
□いままでの学修内容で理解が不足していたところを、演習等によって自ら見いだし、改善に向けて取り組むことができる。
|
16週 |
「前期定期試験」 |
いままでの授業の内容を理解あるいは説明できる。たとえば: □システムの離散化を実施できる。 □システムの応答・定常偏差・周波数特性の解析を実施できる。 □システムの可制御性・可観測性の解析を実施できる。
|
後期 |
3rdQ |
1週 |
【第4章:制御系設計】 「状態フィードバック制御」 ○対象の特性を変えて保つためには ○極配置による閉ループシステムの設計 ○有限整定制御 ☆課題(状態フィードバック制御) |
□閉ループの極を所望の位置に配置するための状態フィードバックのゲインを求めることができる。 □有限整定制御の特徴を説明することができる。
|
2週 |
「同一次元オブザーバ」 ○制御対象の状態を推定するには ○極配置による同一次元オブザーバの設計 ☆課題(同一次元オブザーバ) |
□オブザーバの極を所望の位置に配置するための同一次元オブザーバのゲインを求めることができる。
|
3週 |
「1軸アームの制御」 ○回転サーボユニットSRV02とLabviewを用いた実習 ○一定角速度の動作による摩擦トルクと粘性摩擦係数の測定 ○一定角加速度の動作による慣性モーメントの測定 ○極配置による閉ループシステムの設計 ○2乗平均誤差最小コンテスト |
□1軸アームの実験装置において、摩擦トルク・粘性摩擦係数・慣性モーメントを測定する方法を理解する。 □1軸アームの実験装置において、極配置により状態フィードバックのゲインを求めることができる。
|
4週 |
「最適レギュレータ」 ○2次系式評価関数による閉ループシステムの設計 ○Riccati方程式の解法 ☆課題(最適レギュレータ) |
□2次系式の評価関数に基づいてフィードバックゲインを求めることができる。 □評価関数の係数と閉ループシステムのふるまいの関係を説明することができる。
|
5週 |
「フィードバックの調整」 ○1周期分の遅れに対するゲインの調整 ○積分器を含むフィードバック制御(拡大系を用いたサーボ) ☆課題(フィードバックの調整) |
□制御上に一周期分の遅れや定常偏差がある時の対処法を理解している。
|
6週 |
「カルマンフィルタ」 ○2次系式評価関数によるカルマンフィルタの設計 ○Riccati方程式の解法 ☆課題(カルマンフィルタ) |
□2次系式の評価関数に基づいてカルマンフィルタの時変ゲインを求めることができる。
|
7週 |
「後期中間試験に向けた過去問演習」 |
□いままでの学修内容で理解が不足していたところを、演習等によって自ら見いだし、改善に向けて取り組むことができる。
|
8週 |
「後期中間試験」 |
いままでの授業の内容を理解あるいは説明できる。たとえば: □離散時間における基本的な制御器とオブザーバを設計することができる。
|
4thQ |
9週 |
「回転形倒立振子の最適制御」 ○Scilabを用いた回転形倒立振子のシミュレーション ○最適レギュレータを用いた閉ループシステムの設計 ○回転サーボユニットSRV02とLabviewを用いた実機運転 |
□Scilabを用いて回転形倒立振子の制御シミュレーションを行うことができる。 □最適レギュレータにより求めたフィードバックゲインを用いて、倒立振子の倒立状態を維持することができる。
|
10週 |
「最小二乗法によるシステム同定」 ○システム同定 ○最小二乗法によるシステム同定の仕組み ○最小二乗法によるシステム同定のアルゴリズム ○実演:最小二乗法によるシステム同定のシミュレーション |
□最小二乗法によるシステム同定の仕組みを理解することができる。
|
11週 |
【第5章:離散時間の信号処理】 「離散フーリエ変換」 ○離散フーリエ変換の定義 ○逆離散フーリエ変換 ○窓関数 ○高速フーリエ変換 ☆課題(離散フーリエ変換) |
□離散フーリエ変換および逆離散フーリエ変換の基礎的な計算をそれぞれ行うことができる。 □窓関数を用いた場合の効果を説明することができる。 □離散フーリエ変換と高速フーリエ変換の関係を説明することができる。
|
12週 |
「IIRフィルタ」 ○IIRフィルタと特徴 ○IIRフィルタの設計 ○例題:3次バタワースHPFの設計 ○例題:2次チェビシェフLPFの設計 ☆課題(IIRフィルタ) |
□バタワース特性およびチェビシェフ特性のIIRフィルタをそれぞれ設計することができる。
|
13週 |
「FIRフィルタ」 ○FIRフィルタと特徴 ○線形位相FIRフィルタの設計 ○例題:32次線形位相FIRフィルタの設計 ☆課題(FIRフィルタ) |
□コンピュータを用いて線形位相FIRフィルタを設計することができる。
|
14週 |
「適応フィルタ」 ○NLMSアルゴリズムを用いた適応フィルタ ○適応フィルタの用途 ○シミュレーション例:狭帯域信号と白色ノイズの分離 |
□適応フィルタの効果や応用例を説明することができる。
|
15週 |
「後期定期試験に向けた過去問演習」 |
□今までの学修内容で理解が不足していたところを、演習等によって自ら見いだし、改善に向けて取り組むことができる。
|
16週 |
「後期定期試験」 |
いままでの授業の内容を理解あるいは説明できる。たとえば: □離散時間に関する知識を制御だけではなく信号処理にも応用して、ディジタルフィルタを設計できる。
|
分類 | 分野 | 学習内容 | 学習内容の到達目標 | 到達レベル | 授業週 |
専門的能力 | 分野別の専門工学 | 機械系 | 計測制御 | 自動制御の定義と種類を説明できる。 | 4 | 後16 |
フィードバック制御の概念と構成要素を説明できる。 | 4 | 後16 |
基本的な関数のラプラス変換と逆ラプラス変換を求めることができる。 | 3 | 前8 |
ラプラス変換と逆ラプラス変換を用いて微分方程式を解くことができる。 | 3 | 前8 |
伝達関数を説明できる。 | 4 | 前16 |
ブロック線図を用いて制御系を表現できる。 | 4 | 後8 |
制御系の過渡特性について説明できる。 | 4 | 後16 |
制御系の定常特性について説明できる。 | 4 | 後16 |
制御系の周波数特性について説明できる。 | 4 | 後16 |
安定判別法を用いて制御系の安定・不安定を判別できる。 | 4 | 後16 |
電気・電子系 | 計測 | A/D変換を用いたディジタル計器の原理について理解している。 | 3 | 前8 |
制御 | 伝達関数を用いたシステムの入出力表現ができる。 | 4 | 後16 |
ブロック線図を用いたシステムの表現方法が理解できる。 | 4 | 後8 |
システムの過渡特性についてステップ応答を用いて説明できる。 | 4 | 後16 |
システムの定常特性について、定常偏差を用いて説明できる。 | 4 | 後16 |
システムの周波数特性について、ボード線図を用いて説明できる。 | 4 | 後16 |
フィードバックシステムの安定判別法について説明できる。 | 4 | 後16 |