到達目標
線形変換による図形の像を求めることができること,正方行列の対角化ができることを目標にする.
ルーブリック
| 理想的な到達レベルの目安 | 標準的な到達レベルの目安 | 最低限の到達レベルの目安(可) | 未到達レベルの目安 |
線型変換 | 様々なベクトル空間の基底と次元を理解できる. | 簡単なベクトル空間の基底と次元を理解できる. | ベクトル空間の基底と次元を理解できる. | ベクトル空間の基底と次元を理解できない. |
固有値・固有ベクトル | 複雑な正方行列の固有値・固有ベクトルを求め,対角化ができる. | 簡単な正方行列の固有値・固有ベクトルを求め,対角化ができる. | 正方行列の固有値・固有ベクトルを求めることができる. | 正方行列の固有値・固有ベクトルを求めることができない. |
対称行列の固有値・固有ベクトル | 複雑な対称行列の固有値・固有ベクトルを求め,直交行列により対角化ができる. | 簡単な対称行列の固有値・固有ベクトルを求め,直交行列により対角化ができる. | 対称行列の固有値・固有ベクトルを求めることができる. | 対称行列の固有値・固有ベクトルを求めることができない. |
学科の到達目標項目との関係
学習・教育目標 C1
説明
閉じる
JABEE (c)
説明
閉じる
教育方法等
概要:
ベクトル空間に関する基本事項,正方行列の固有値・固有ベクトルの概念とその応用としての正方行列の対角化を学ぶ.
授業の進め方・方法:
上記の内容を教科書を中心に学ぶ.教科書や問題集の練習問題や必要に応じて補助プリント等に取り組むことで学習内容の定着をはかる.各自が到達目標を達成できるよう,課題等を課す.事前学習および復習を自発的に行うことを期待する.
注意点:
授業で学ぶ事項はコツコツと(反復)復習を行い,自学自習の習慣をつけること.分からないことは数学教員まで聞きに行くこと.
授業の属性・履修上の区分
授業計画
|
|
週 |
授業内容 |
週ごとの到達目標 |
後期 |
3rdQ |
1週 |
ガイダンス |
|
2週 |
ベクトル空間とその部分空間 |
ベクトル空間とその部分空間の定義を理解出来る.
|
3週 |
基底と次元 |
ベクトル空間の基底と次元を理解出来る.
|
4週 |
斉次連立1次方程式の解空間 |
斉次連立1次方程式の解空間を理解出来る.
|
5週 |
ベクトルが張る部分空間 |
ベクトルが張る部分空間を理解出来る.
|
6週 |
線型写像 |
線型写像を理解し,その核と像を求める事が出来る.
|
7週 |
正規直交基底 |
正規直交基底を理解出来る.
|
8週 |
後期中間試験 |
|
4thQ |
9週 |
3次正方行列の固有値・固有ベクトル |
3次正方行列の固有値・固有ベクトルを求める事が出来る.
|
10週 |
2次正方行列の対角化 |
2次の正方行列の対角化が出来る.
|
11週 |
3次正方行列の対角化 |
3次の正方行列の対角化が出来る.
|
12週 |
直交行列・対称行列とその固有値 |
直交行列と対称行列の定義と性質を理解出来る.
|
13週 |
直交行列による対称行列の対角化 |
直交行列によって対称行列を対角化する事が出来る.
|
14週 |
付録B(2次曲線の標準形とその分類)1 |
2次曲線の標準形を求め,分類する事が出来る.
|
15週 |
付録B(2次曲線の標準形とその分類)2 |
2次曲線の標準形を求め,分類する事が出来る.
|
16週 |
|
|
モデルコアカリキュラムの学習内容と到達目標
分類 | 分野 | 学習内容 | 学習内容の到達目標 | 到達レベル | 授業週 |
基礎的能力 | 数学 | 数学 | 数学 | 線形変換の定義を理解し、線形変換を表す行列を求めることができる。 | 3 | 後2,後12,後14,後15 |
合成変換や逆変換を表す行列を求めることができる。 | 3 | 後2,後12,後14,後15 |
平面内の回転に対応する線形変換を表す行列を求めることができる。 | 3 | 後2,後12,後14,後15 |
評価割合
| 試験 | 発表 | 相互評価 | 態度 | ポートフォリオ | その他 | 合計 |
総合評価割合 | 80 | 0 | 0 | 0 | 0 | 20 | 100 |
基礎的能力 | 80 | 0 | 0 | 0 | 0 | 20 | 100 |
専門的能力 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
分野横断的能力 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |