概要:
【授業の目標】
専門科目を学ぶために最も重要な科目の1つであり,その応用は多岐にわたる。微分積分学の基本事項,偏微分,重積分,微分方程式について,その概念と計算法,および応用について学ぶ。この授業では,「工学を学ぶ上で必要な解析学の基礎学力を身に付けること」と「工学的課題の数学的解決方法の習得」を目標とする。
【キーワード】
関数の展開,偏微分,重積分,微分方程式
授業の進め方・方法:
【事前事後学習など】
到達目標の達成度を確認するために,適宜、課題や小試験を与える。
【関連科目】
基礎数学A,基礎数学B,解析学I,代数・幾何I,応用数学
注意点:
【その他の履修上の注意事項や学習上の助言】
基礎数学A,基礎数学B,解析学I,代数・幾何Iの数学の知識が必要である。
定期試験前の学習はもちろん,日常の予習復習も非常に大切である。疑問点などがあれば質問をして解決しておく。定期試験には内容を十分に理解して受験する。課題などは必ず提出する。受講中は講義に集中する。携帯電話の電源を切るなど他の学生に迷惑を掛けないようにする。
【専門科目との関連】
専門科目全般:微積分(微積分は工学を理解するためには、必ず習得しておく必要がある。)
【評価方法・評価基準】
前期中間試験,前期末試験,後期中間試験,学年末試験を実施する。成績の評価基準として50点以上を合格とする。
前期末:前期中間試験(50%),前期末試験(50%)
学年末:一年間の定期試験の総合的評価(70%),課題・小試験・レポート(30%)
【その他履修上の注意事項や学習上の助言】
授業中の学習に真剣に取り組むことと,日頃の予習・復習が非常に大切である。定期試験時には十分に勉強し受験すること。課題のレポートなどは必ず提出すること。
分類 | 分野 | 学習内容 | 学習内容の到達目標 | 到達レベル | 授業週 |
基礎的能力 | 数学 | 数学 | 数学 | 2次の導関数を利用して、グラフの凹凸を調べることができる。 | 3 | |
関数の媒介変数表示を理解し、媒介変数を利用して、その導関数を求めることができる。 | 3 | |
簡単な場合について、曲線の長さを定積分で求めることができる。 | 3 | |
いろいろな関数の偏導関数を求めることができる。 | 3 | |
2変数関数の定義域を理解し、不等式やグラフで表すことができる。 | 3 | |
合成関数の偏微分法を利用して、偏導関数を求めることができる。 | 3 | |
簡単な関数について、2次までの偏導関数を求めることができる。 | 3 | |
偏導関数を用いて、基本的な2変数関数の極値を求めることができる。 | 3 | |
2重積分を累次積分になおして計算することができる。 | 3 | |
2重積分の定義を理解し、簡単な2重積分を累次積分に直して求めることができる。 | 3 | |
極座標に変換することによって2重積分を求めることができる。 | 3 | |
2重積分を用いて、簡単な立体の体積を求めることができる。 | 3 | |
基本的な変数分離形の微分方程式を解くことができる。 | 3 | |
微分方程式の意味を理解し、簡単な変数分離形の微分方程式を解くことができる。 | 3 | |
簡単な1階線形微分方程式を解くことができる。 | 3 | |
定数係数2階斉次線形微分方程式を解くことができる。 | 3 | |