概要:
力学は微積分の成立とともに確立された近代科学の基礎となる学問である。授業ではニュートン力学の体系的な理解をとおして基礎学力としての力学を身につけ,運動方程式を基礎としていろいろな課題を解決できることを学ぶ。さらに力学で用いられる速度,加速度,運動量,角運動量,力のモーメント,慣性モーメント等の重要な物理量を理解する。
授業の進め方・方法:
【事前事後学習など】到達目標の達成度を確認するため,随時,課題演習レポートを与える。
注意点:
微分・積分を用いて理論を説明するので微積分の計算に習熟すること。
計算に埋没せず,つねに物理的に理解するよう心がけること。
課題演習レポートは期限を守って必ず提出すること。
【評価方法・評価基準】成績の評価基準として50点以上を合格とする。
前期中間試験,前期末試験,後期中間試験,学年末試験を実施する。
前期末成績:前期中間試験(35%),前期末試験(35%),前期課題演習レポート(30%)
学年末成績:後期中間試験(35%),学年末試験(35%),後期課題演習レポート(30%)で後期のみの成績を算出し,前期と後期の成績の相加平均とする。成績の評価基準として50点以上を合格とする。
分類 | 分野 | 学習内容 | 学習内容の到達目標 | 到達レベル | 授業週 |
基礎的能力 | 自然科学 | 物理 | 力学 | 速度と加速度の概念を説明できる。 | 3 | |
平均の速度、平均の加速度を計算することができる。 | 3 | |
直線および平面運動において、2物体の相対速度、合成速度を求めることができる。 | 3 | |
等加速度直線運動の公式を用いて、物体の座標、時間、速度に関する計算ができる。 | 3 | |
平面内を移動する質点の運動を位置ベクトルの変化として扱うことができる。 | 3 | |
物体の変位、速度、加速度を微分・積分を用いて相互に計算することができる。 | 3 | |
自由落下、及び鉛直投射した物体の座標、速度、時間に関する計算ができる。 | 3 | |
水平投射、及び斜方投射した物体の座標、速度、時間に関する計算ができる。 | 3 | |
物体に作用する力を図示することができる。 | 3 | |
力の合成と分解をすることができる。 | 3 | |
質点にはたらく力のつりあいの問題を解くことができる。 | 3 | |
重力、抗力、張力、圧力について説明できる。 | 3 | |
フックの法則を用いて、弾性力の大きさを求めることができる。 | 3 | |
慣性の法則について説明できる。 | 3 | |
作用と反作用の関係について、具体例を挙げて説明できる。 | 3 | |
運動の法則について説明できる。 | 3 | |
運動方程式を用いた計算ができる。 | 3 | |
簡単な運動について微分方程式の形で運動方程式を立て、初期値問題として解くことができる。 | 3 | |
静止摩擦力がはたらいている場合の力のつりあいについて説明できる。 | 3 | |
最大摩擦力に関する計算ができる。 | 3 | |
動摩擦力に関する計算ができる。 | 3 | |
仕事と仕事率に関する計算ができる。 | 3 | |
物体の運動エネルギーに関する計算ができる。 | 3 | |
重力による位置エネルギーに関する計算ができる。 | 3 | |
弾性力による位置エネルギーに関する計算ができる。 | 3 | |
力学的エネルギー保存則を様々な物理量の計算に利用できる。 | 3 | |
物体の質量と速度から運動量を求めることができる。 | 3 | |
運動量の差が力積に等しいことを利用して、様々な物理量の計算ができる。 | 3 | |
運動量保存則を様々な物理量の計算に利用できる。 | 3 | |
周期、振動数など単振動を特徴づける諸量を求めることができる。 | 3 | |
単振動における変位、速度、加速度、力の関係を説明できる。 | 3 | |
等速円運動をする物体の速度、角速度、加速度、向心力に関する計算ができる。 | 3 | |
万有引力の法則から物体間にはたらく万有引力を求めることができる. | 3 | |
万有引力による位置エネルギーに関する計算ができる。 | 3 | |
力のモーメントを求めることができる。 | 3 | |
角運動量を求めることができる。 | 3 | |
角運動量保存則について具体的な例を挙げて説明できる。 | 3 | |
剛体における力のつり合いに関する計算ができる。 | 3 | |
重心に関する計算ができる。 | 3 | |
一様な棒などの簡単な形状に対する慣性モーメントを求めることができる。 | 3 | |
剛体の回転運動について、回転の運動方程式を立てて解くことができる。 | 3 | |