解析Ⅲ

科目基礎情報

学校 福井工業高等専門学校 開講年度 令和06年度 (2024年度)
授業科目 解析Ⅲ
科目番号 0058 科目区分 一般 / 必修
授業形態 講義 単位の種別と単位数 学修単位: 2
開設学科 電子情報工学科 対象学年 4
開設期 通年 週時間数 前期:2 後期:2
教科書/教材 「微分積分2」,「微分積分2問題集」(森北出版),「応用数学」,「応用数学問題集」(森北出版)
担当教員 井之上 和代

到達目標

(1)2変数関数の微分積分を理解し、計算技法を身に着ける。
(2)ベクトルの内積と外積について理解し、図形の問題に応用できる。
(3)フーリエ級数の意味を理解し、求めることができる。

ルーブリック

理想的な到達レベルの目安標準的な到達レベルの目安未到達レベルの目安
評価項目12変数関数の微分積分を理解し、偏微分の計算、極値問題を解く事ができる。2変数関数の微分積分の基本的な内容や計算技法について理解している。2変数関数の微分積分について理解していない。
評価項目2線積分や面積分を求めることができる。ベクトルの内積と外積を求めることができ、線積分や面積分について理解している。ベクトルの内積や外積を求める事ができない。
評価項目3フーリエ級数を用いて、偏微分方程式を解くことができる。基本的な関数のフーリエ級数、フーリエ変換を求める事ができる。基本的な関数のフーリエ級数、フーリエ変換を求める事ができない。

学科の到達目標項目との関係

学習・教育到達度目標 RB1 説明 閉じる
JABEE JB1 説明 閉じる

教育方法等

概要:
3年生までで学習した内容を基本として、2変数関数の微分積分(偏微分)、ベクトル解析、フーリエ級数・フーリエ変換について学ぶ。
これらの基本概念の習得と、応用問題を解くことに習熟することを目指す。
授業の進め方・方法:
自作教材を主として用いる。具体例を多く与え、概念を理解しやすくする。
自学自習、学び合いを中心とした方法で行う。毎週の予習と課題演習を課す。
注意点:
この科目は、学修単位B(30時間の授業で1単位)の科目である。
ただし、授業外学修の時間を含む。
年間成績は、100点満点で評価するが、その割合は定期試験(年4回)70%、平常点(予習や課題演習)30%とし、年間成績が60点以上で合格とする。
年間成績が60点に達しない場合、再試験を行う場合がある。ただし、予習の取り組み状況が芳しくない場合は再試験の対象外とする。

授業の属性・履修上の区分

アクティブラーニング
ICT 利用
遠隔授業対応
実務経験のある教員による授業

授業計画

授業内容 週ごとの到達目標
前期
1stQ
1週 ガイダンス、偏微分法:2変数関数
【授業外学習】予習に取り組む
2変数関数の定義、グラフの意味を理解する。
2週 偏導関数
【授業外学習】予習に取り組む
2変数関数の極限や連続性、偏微分係数、偏導関数について理解し、計算することができる。
3週 合成関数の導関数・偏導関数
【授業外学習】予習に取り組む
合成関数の導関数および偏導関数を計算することができる。
4週 接平面、全微分と近似
【授業外学習】予習に取り組む
接平面の意味を理解し方程式を求めることができる。全微分の意味を理解し、近似値を求めることができる。
5週 偏導関数の応用:2変数関数の極値・極値の判定法
【授業外学習】予習に取り組む
2変数関数の高次偏導関数、極値の定義と、図形的な意味を理解する。2変数関数の極値を求めることができる。
6週 まとめと演習
【授業外学習】予習に取り組む
2変数関数を理解し、偏導関数等を求めることができる。
7週 前期中間試験
【授業外学習】試験の準備
8週 試験の解説、陰関数の微分法
【授業外学習】試験の準備
陰関数の微分法を理解し、求めることができる。
2ndQ
9週 条件付き極値問題
【授業外学習】予習に取り組む
条件付き極値問題について理解し、求めることができる。
10週 ベクトル:ベクトルとその内積・外積
【授業外学習】予習に取り組む
ベクトルの内積を求めることができる。ベクトルの外積の定義を理解し、求めることができる。
11週 勾配・発散・回転:スカラー場とベクトル場、スカラー場の勾配
【授業外学習】予習に取り組む
スカラー場とベクトル場を理解している。スカラー場の勾配の意味を理解し、求めることができる。
12週 ベクトル場の発散
【授業外学習】予習に取り組む
ベクトル場の発散の意味を理解し、求めることができる。
13週 ベクトル場の回転
【授業外学習】予習に取り組む
ベクトル場の回転の意味を理解し、求めることができる。
14週 まとめと演習
【授業外学習】試験の準備
ベクトルの内積、外積を求めることができる。勾配・発散・回転を求めることができる。
15週 前期期末試験
【授業外学習】試験の準備
16週 試験返却と解説
後期
3rdQ
1週 線積分と面積分:曲線
【授業外学習】予習に取り組む
曲線の媒介変数表示と、接線ベクトルについて理解し、接線ベクトルを求めることができる。
2週 線積分
【授業外学習】予習に取り組む
スカラー場、ベクトル場の線積分について理解し、求めることができる。
3週 曲面
【授業外学習】予習に取り組む
曲面の媒介変数表示と、接線ベクトル・法線ベクトルについて理解し、接線ベクトル・法線ベクトルを求めることができる。
4週 面積分
【授業外学習】予習に取り組む
スカラー場、ベクトル場の面積分について理解し、求めることができる。
5週 ガウスの発散定理とストークスの定理:ガウスの発散定理
【授業外学習】予習に取り組む
ガウスの発散定理の意味と求め方を理解している。
6週 ストークスの定理
【授業外学習】予習に取り組む
ストークスの定理の意味と求め方を理解している。
7週 まとめと演習
【授業外学習】試験の準備
まとめ 線積分・面積分を求めることができる。
8週 後期中間考査 後期中間考査
4thQ
9週 試験の解説、
【授業外学習】予習に取り組む
10週 フーリエ級数
【授業外学習】予習に取り組む
フーリエ級数の定義を理解し、基本的な周期関数のフーリエ級数を求めることができる。
11週 偏微分方程式とフーリエ級数:熱伝導方程式
【授業外学習】予習に取り組む
偏微分方程式のフーリエ級数の応用について学ぶ。熱伝導方程式の解法を学ぶ。
12週 熱伝導方程式
【授業外学習】予習に取り組む
熱伝導方程式の解法を学ぶ。
13週 波動方程式
【授業外学習】予習に取り組む
波動方程式の解法を学ぶ。
14週 まとめと演習
【授業外学習】予習に取り組む
熱伝導方程式・波動方程式にフーリエ級数を利用することを練習する。
15週 まとめと演習
【授業外学習】試験の準備
熱伝導方程式・波動方程式にフーリエ級数を利用することを練習する。
16週 後期期末試験

モデルコアカリキュラムの学習内容と到達目標

分類分野学習内容学習内容の到達目標到達レベル授業週
基礎的能力数学数学数学2変数関数の定義域を理解し、不等式やグラフで表すことができる。3前1
合成関数の偏微分法を利用して、偏導関数を求めることができる。3前2,前3
簡単な関数について、2次までの偏導関数を求めることができる。3前3,前5
偏導関数を用いて、基本的な2変数関数の極値を求めることができる。3前5

評価割合

試験予習演習など合計
総合評価割合701515100
基礎的能力701515100
専門的能力0000
分野横断的能力0000