到達目標
専門教育に必要な基礎知識としての数学を習得するために、以下の点を目標とする。
(1) 媒介変数表示や極方程式で表された関数の微分・積分、広義積分が計算できる。
(2) 関数のべき級数による展開ができる。
(3)2変数関数の偏導関数が計算でき、さらにそれらを用いて2変数関数の極値を求めることができる。
(4)2変数関数の重積分の値を計算できる。
(5) 微分積分の応用問題を解くことができる。
(6)一階、二階の常微分方程式が解ける。
モデルコアカリキュラムに含まれる到達目標を含む。対応は数学科HPを参照。
ルーブリック
| 理想的な到達レベルの目安 | 標準的な到達レベルの目安 | 未到達レベルの目安 |
評価項目1 | やや発展的な微分方程式を解くことができる。 | 基本的な微分方程式を解くことができる。 | 基本的な微分方程式を解くことができない。 |
評価項目2 | やや発展的な二変数関数の極限値、偏導関数、極値の計算ができる。 | 二変数関数の極限値、偏導関数、極値の計算ができる。 | 二変数関数の極限値、偏導関数、極値の計算ができない。 |
評価項目3 | やや発展的な広義積分、二重積分の計算ができる。 | 基本的な広義積分、二重積分の計算ができる。 | 基本的な広義積分、二重積分の計算ができない。 |
学科の到達目標項目との関係
教育方法等
概要:
解析Ⅰの内容を踏まえて、一変数関数の微積分の応用、二変数関数の微積分について学習する。
授業の進め方・方法:
授業は、講義と問題演習、小テスト等を適宜取り混ぜて行う。具体的な例を多く与え、また基本問題を反復して行うことにより、基本的な数学的な考え方の理解と、計算技法の習得の両方を目指す。
注意点:
100点満点で60点以上を合格とする。成績の算出方法は以下のとおり。
成績(100)=小テストの得点率×0.7(70)+課題(30)
授業計画
|
|
週 |
授業内容 |
週ごとの到達目標 |
前期 |
1stQ |
1週 |
ガイダンス、1階微分方程式(1) |
微分方程式を理解している。
|
2週 |
一階微分方程式(2) |
変数分離形の微分方程式が解ける。
|
3週 |
一階微分方程式(3) |
1階線形微分方程式が解ける。
|
4週 |
二階微分方程式(1) |
定数係数斉次および非斉次2階線形微分方程式が解ける。
|
5週 |
二階微分方程式(2) |
定数係数2階線形微分方程式の応用問題が解ける。
|
6週 |
広義積分 |
広義積分が計算できる。
|
7週 |
2重積分(1) |
累次積分に直して二重積分が計算できる。積分の順序交換ができる。
|
8週 |
前期中間試験 |
|
2ndQ |
9週 |
2重積分(2) |
線形変換による二重積分の計算ができる。
|
10週 |
2重積分(3) |
極座標変換による二重積分の計算ができる。
|
11週 |
二重積分の応用(1) |
二重積分で立体の体積の計算ができる。
|
12週 |
二重積分の応用(2) |
二重積分を用いて広義積分の計算ができる。
|
13週 |
媒介変数表示とその微積分法 |
曲線の媒介変数表示を理解している。媒介変数表示された曲線の微積分に関する問題を解くことができる。
|
14週 |
極座標表示とその微積分法 |
直交座標と極座標の関係を理解している。極方程式で表された曲線の微積分に関する問題を解くことができる。
|
15週 |
前期期末試験 |
|
16週 |
学習のまとめ |
|
後期 |
3rdQ |
1週 |
関数の展開(1) |
べき級数の収束・発散を理解して、収束半径の計算ができる。
|
2週 |
関数の展開(2) |
項別微分、項別積分定理を用いて、関数のべき級数展開することができる。
|
3週 |
関数の展開(3) |
関数のマクローリン展開ができる。
|
4週 |
関数の展開(4) |
基本的なマクローリン展開を用いて、関数のべき級数展開をすることができる。
|
5週 |
関数の展開(5) |
基本的な関数のテイラー展開ができ、その誤差評価ができる。
|
6週 |
偏導関数(1) |
二変数関数を理解し、そのグラフの概形をかける。
|
7週 |
偏導関数(2) |
二変数関数の極限値の計算ができる。二変数関数の連続の定義を理解している。
|
8週 |
後期中間試験 |
|
4thQ |
9週 |
偏導関数(3) |
偏導関数の定義を理解している。
|
10週 |
偏導関数(4) |
二次偏導関数が計算できる。
|
11週 |
偏導関数(5) |
合成関数の導関数・偏導関数の計算ができる。
|
12週 |
偏導関数(6) |
接平面について理解している。
|
13週 |
偏導関数(7) |
全微分と全微分による近似について理解している。
|
14週 |
偏導関数の応用 |
二変数関数の極値の計算ができる。
|
15週 |
後期期末試験 |
|
16週 |
一年間のまとめ |
|
評価割合
| 試験 | 発表 | 相互評価 | 態度 | ポートフォリオ | 課題 | 合計 |
総合評価割合 | 70 | 0 | 0 | 0 | 0 | 30 | 100 |
基礎的能力 | 70 | 0 | 0 | 0 | 0 | 30 | 100 |
専門的能力 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
分野横断的能力 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |