自動制御

科目基礎情報

学校 沼津工業高等専門学校 開講年度 令和04年度 (2022年度)
授業科目 自動制御
科目番号 2022-464 科目区分 専門 / 必修
授業形態 授業 単位の種別と単位数 学修単位: 2
開設学科 制御情報工学科 対象学年 4
開設期 通年 週時間数 前期:2 後期:2
教科書/教材 JSMEテキストシリーズ 制御工学 日本機械学会(著)
担当教員 矢入 聡

到達目標

1. 常微分方程式を離散近似し,PID制御における時間応答の数値解を求めることができる(PID制御のシミュレーションができる).
2. 一次遅れ要素に対するPID制御の時間応答を導出できる.
3. 伝達関数における安定判別ができる.
4. 伝達関数における周波数応答が導出でき,ボード線図が描ける.
5. 与えられた設計仕様を満たすPID制御系の設計方法が理解できる.
6. 授業中に発言したり,課題レポートに独自の工夫を述べたりすることができる.

ルーブリック

理想的な到達レベルの目安標準的な到達レベルの目安未到達レベルの目安
1.常微分方程式を離散近似し,PID制御における時間応答の数値解を求めることができる(PID制御のシミュレーションができる).□常微分方程式を離散化でき,その理由を説明できる. □PID制御器を離散化でき,その理由を説明できる. □PID制御における時間応答の数値解を求めることができ,その数値解と理論解とを比較検証できる.□常微分方程式を離散化できる. □PID制御器を離散化できる. □PID制御における時間応答の数値解を求めることができる.□常微分方程式を離散化できない. □PID制御器を離散化できない. □PID制御における時間応答の数値解を求めることができない.
2.一次遅れ要素に対するPID制御の時間応答を導出できる.□一次遅れ要素に対するPID制御の時間応答が導出できる(定値制御).□ラプラス変換の諸定理を導出できる. □一次遅れ要素における単位インパルス・インディシャル応答が導出できる. □一次遅れ要素に対するP制御の時間応答が導出できる(定値制御).□ラプラス変換の諸定理を導出できない. □一次遅れ要素における単位インパルス・インディシャル応答が導出できない. □一次遅れ要素に対するP制御の時間応答が導出できない.
3.伝達関数における安定判別ができる.□ナイキストの安定判別法による安定判別ができる. □ゲイン余裕・位相余裕をベクトル軌跡を使って説明できる. □フルビッツの安定判別法による伝達関数の安定判別ができる.□常微分方程式における伝達関数が導出できる. □伝達関数の安定性と極との関係が説明できる. □いずれか1つの安定判別法による伝達関数の安定判別ができる.□常微分方程式における伝達関数が導出できない. □伝達関数の安定性と極との関係が説明できない. □いずれの安定判別法による伝達関数の安定判別もできない.
4.伝達関数における周波数応答が導出でき,ボード線図が描ける.□フィードバック制御系における一巡伝達関数のボード線図を描くことができ,安定性との関連を説明できる.□複素数の実部・虚部,絶対値,角度が計算できる. □伝達関数におけるゲイン・位相を求めることができる. □ゲイン・位相の式からボード線図が描ける.□複素数の実部・虚部,絶対値,角度が計算できない. □伝達関数におけるゲイン・位相を求めることができない. □ゲイン・位相の式からボード線図が描けない.
5.与えられた設計仕様を満たすPID制御系の設計方法が理解できる.□一次・二次遅れ要素に対する設計仕様を満たすPID制御系が設計できる.□一次・二次遅れ要素のインディシャル応答とそれぞれのパラメータとの関係が説明できる. □一次・二次遅れ要素におけるPID制御系の設計方法が理解できる.□一次・二次遅れ要素のインディシャル応答とそれぞれのパラメータとの関係が説明できない. □一次・二次遅れ要素におけるPID制御系の設計方法が理解できない.
6.授業中に発言したり,課題レポートに独自の工夫を述べたりすることができる.□1/4期に3回以上,授業中に発言できる. □8割以上の課題レポートに対して,創意工夫することができる.□授業中に発言したり,指名されたら答えたりすることができる. □課題レポートに対して,創意工夫することができる.□授業中に発言したり,指名されたら答えたりすることができない. □課題レポートに対して,創意工夫することができない.

学科の到達目標項目との関係

実践指針 (C3) 説明 閉じる
実践指針のレベル (C3-3) 説明 閉じる
【本校学習・教育目標(本科のみ)】 3 説明 閉じる
【プログラム学習・教育目標 】 C 説明 閉じる

教育方法等

概要:
産業機器はもちろん,輸送機器や家電など,今やコンピュータ制御無くしては,生活が成り立たなくなった.すなわち,機械工学の専門家であっても,制御の知識を要求される時代となった.本科目は,そのような要求を満たす技術者となるための,制御工学に関する基礎的な事を学習し,社会に貢献できる人材となることを目的とする.
授業の進め方・方法:
古典制御の内容を中心に,講義形式で授業を進める.授業方法は,教員と学生との双方向を心掛け,学生参加型を意識した授業を実施する.隔週または3週に1回の頻度でレポート課題を課す.
注意点:
1.評価については,評価割合に従って行います.
2.この科目は学修単位科目であり,1単位あたり30時間の対面授業を実施します.併せて1単位あたり15時間の事前学習・事後学習が必要となります.

授業の属性・履修上の区分

アクティブラーニング
ICT 利用
遠隔授業対応
実務経験のある教員による授業

授業計画

授業内容 週ごとの到達目標
前期
1stQ
1週 シラバス・ルーブリック説明,レポートの書き方,教科書の紹介 自ら学ぶレポートの書き方を説明できる.
2週 制御事例紹介(倒立振子・磁気浮上・制振制御),制御の基礎概念(専門用語:制御対象,フィードバック,モデリング) 自動制御,フィードバック制御の基礎概念や種類を説明できる.
3週 制御に関する用語,シミュレーションの概念,微分の定義と離散化 微分演算を離散化できる.
4週 シミュレーションの意味および計算の概要,時間微分の離散化,dx(t)/dt=t,x(0)=0の近似解(数値解)の導出と考察(真値との比較) 常微分方程式の数値解を求めることができる.
5週 シミュレーションの意義,RC回路とは,RC回路におけるシミュレーション(モデリング,離散化,逐次計算(時間応答)) RC回路におけるインディシャル応答の数値解を求めることができる.
6週 フィードバック制御の意味・ブロック線図,P制御器とその離散化,RC回路におけるP制御のシミュレーション 比例制御(P制御)のシミュレーションができる.
7週 P制御の意味と特徴,I制御器とその離散化,RC回路におけるI制御のシミュレーションおよび考察 積分制御(I制御)のシミュレーションができる.
8週 シミュレーションに関する総復習 速度や加速度の概念,オームの法則,フックの法則,運動方程式を応用し,電気回路や単振動などの数値シミュレーションの基礎的な問題を解くことができる.
2ndQ
9週 前期中間試験の解答・解説,成績集計結果,授業の感想・希望集計結果の説明 理解が不足している事柄を把握し,自ら補うことができる.
10週 RC回路におけるPI制御のシミュレーション,RC回路におけるD制御のシミュレーション(オイラー法によるD制御器の離散化における修正,不連続関数の微分の回避) 微分制御(D制御)のシミュレーションができる.
11週 RC回路におけるD制御のシミュレーション(不連続関数の微分の回避),ラプラス変換の定義・ラプラス変換を用いた線形1階常微分方程式の解 ラプラス変換を用いて線形1階常微分方程式が解ける.
12週 ラプラス変換の意義・定義,exp(-αt)・1(t)・δ(t)のラプラス変換,ラプラス変換の諸定理(微分の定理) 定積分や関数の極限,合成関数の導関数を応用し,ラプラス変換の諸定理を導出できる.
13週 ラプラス変換を用いたRC回路のインディシャル応答の導出,ラプラス変換の諸定理(線形法則,微分法則,積分法則,2階微分,2階積分,最終値の定理) 指数関数を応用し,ラプラス変換を用いて,RC回路におけるインディシャル応答が導出できる.
14週 伝達関数の定義,RC回路・P・I・D制御器の伝達関数,RC回路の伝達関数を用いたインディシャル応答・単位インパルス応答の導出 伝達関数を用いて,RC回路におけるインディシャル応答・単位インパルス応答が導出できる.
15週 RC回路の伝達関数,一次遅れ要素におけるインディシャル応答,時定数・ゲイン定数,最終値の定理を用いたy(∞)の導出 関数の接線の方程式を応用し,一次遅れ要素におけるインディシャル応答(過渡特性・定常特性)の特徴を説明できる.
16週
後期
3rdQ
1週 一次遅れ要素に対するP制御の閉ループ伝達関数,一巡伝達関数と閉ループ伝達関数との関係,一次遅れ要素に対するI制御の閉ループ伝達関数およびr(t)=1(t)に対する最終値の導出,二次遅れ要素の概要 ブロック線図が説明でき,閉ループ伝達関数及び一巡伝達関数を導出できる.
2週 2次遅れ要素の伝達関数一般形,ばね-質点系(1自由度振動系)の運動方程式とその解の振る舞い(単調減少・減衰振動),臨界減衰係数 二次遅れ要素の一例としてバネ-質点系(1自由度振動系)の時間応答の特徴を説明できる.
3週 ばね-質点系と2次遅れ要素の伝達関数一般形との関係,固有角振動数と非減衰固有角振動数との関係,制御系の安定性の概要,安定・不安定システムの時間応答のシミュレーション 二次遅れ要素の伝達関数における,ゲイン定数,非減衰固有角振動数,減衰比について説明できる.
4週 2次遅れ要素におけるインディシャル応答・単位インパルス応答の減衰比の影響(補足),伝達関数の安定性(特性方程式の解(極)と安定性との関係:分子多項式がある場合,分母が2次式の場合) 制御システムにおける安定性の概念について説明できる.
5週 部分分数分解,伝達関数の安定性(1次,2次),フルビッツの安定判別法の概要・行列式の計算 解の公式を応用し,伝達関数における安定性について説明できる.
6週 1次・2次の伝達関数の安定判別,フルビッツの安定判別法,安定判別の応用(一次遅れ要素におけるP制御の安定範囲の導出) 行列式や不等式を応用し,フルビッツの安定判別法を用いて,伝達関数の安定判別ができる.
7週 定常偏差(一次遅れ要素におけるP制御の定常偏差),制御系の設計(一次遅れ要素におけるI制御器の安定範囲,一次遅れ要素におけるPID制御器の設計 設計仕様:閉ループの時定数Tm・定常偏差ゼロ) 一次遅れ要素に対して,PID制御系が設計できる.
8週 安定性に関する総復習 伝達関数の概念を用いた制御システムの安定性に関する問題を解くことができる.
4thQ
9週 後期中間試験の解答・解説,授業の感想・希望集計結果の説明,成績集計結果 理解が不足している事柄を把握し,自ら補うことができる.
10週 周波数応答とは,フーリエ変換と周波数応答,変位センサ(レーザ変位計)を例にした周波数応答の概念,入力u(t)=sin(wt)に対する伝達関数G(s)の出力y(t)=|G(jw)|sin(wt+∠G(jw)),積分要素におけるボード線図の求め方 周波数応答の概念を説明できる.
11週 周波数応答(ゲイン・位相線図,dB(デシベル)とは,積分要素・一次遅れ要素のボード線図) 複素数の演算,オイラーの公式および弧度法を基礎として,三角比や三角関数,加法定理を応用し,一次遅れ要素におけるボード線図を描くことができる.
12週 一次・二次遅れ要素におけるPID制御器の設計の補足,ベクトル軌跡(積分器) 積分要素におけるベクトル軌跡を描くことができる.
13週 積分要素における積分特性,一次遅れ要素におけるボード線図(ゲイン・位相:高域における積分特性・ローパスフィルタ)およびベクトル軌跡 円の方程式を応用し,一次遅れ要素におけるベクトル軌跡を描くことができる.
14週 一次遅れ要素のボード線図とベクトル軌跡の関係,一巡伝達関数,ナイキストの安定判別法(ナイキスト線図の描き方および判別手順) ナイキストの安定判別法を用いた安定判別ができる.
15週 ナイキストの安定判別法における判別手順(復習),一巡伝達関数 2/(2s-1) における安定判別,安定余裕(ゲイン余裕・位相余裕),ゲイン余裕を設計仕様とする2次遅れ要素におけるI制御器の設計 安定余裕を考慮したフィードバック制御系の設計ができる.
16週

モデルコアカリキュラムの学習内容と到達目標

分類分野学習内容学習内容の到達目標到達レベル授業週
専門的能力分野別の専門工学機械系分野計測制御自動制御の定義と種類を説明できる。4前2
フィードバック制御の概念と構成要素を説明できる。4前2,前6
基本的な関数のラプラス変換と逆ラプラス変換を求めることができる。4前11,前12
ラプラス変換と逆ラプラス変換を用いて微分方程式を解くことができる。4前11,前12
伝達関数を説明できる。4前14
ブロック線図を用いて制御系を表現できる。4後1
制御系の過渡特性について説明できる。4前13,前14,前15,後2
制御系の定常特性について説明できる。4前13,前14,前15,後2
制御系の周波数特性について説明できる。4後11,後13,後14
安定判別法を用いて制御系の安定・不安定を判別できる。4後6,後15
電気・電子系分野制御伝達関数を用いたシステムの入出力表現ができる。4前14,前15
ブロック線図を用いてシステムを表現することができる。4前6,後1
システムの過渡特性について、ステップ応答を用いて説明できる。4前13,前14
システムの定常特性について、定常偏差を用いて説明できる。4前15,後7
システムの周波数特性について、ボード線図を用いて説明できる。4後10,後11
フィードバックシステムの安定判別法について説明できる。4後5,後6,後14,後15

評価割合

定期試験課題レポートその他(授業態度)合計
総合評価割合603010100
1.常微分方程式を離散近似し,PID制御における時間応答の数値解を求めることができる(PID制御のシミュレーションができる).125017
2.一次遅れ要素に対するPID制御の時間応答を導出できる.125017
3.伝達関数における安定判別ができる.125017
4.伝達関数における周波数応答が導出でき,ボード線図が描ける.125017
5.与えられた設計仕様を満たすPID制御系の設計方法が理解できる.125017
6.授業中に発言したり,課題レポートに独自の工夫を述べたりすることができる.051015