電気基礎演習A

科目基礎情報

学校 豊田工業高等専門学校 開講年度 平成29年度 (2017年度)
授業科目 電気基礎演習A
科目番号 71141 科目区分 専門 / 選択
授業形態 演習 単位の種別と単位数 履修単位: 1
開設学科 電気・電子システム工学科 対象学年 1
開設期 前期 週時間数 2
教科書/教材 「新編 高専の数学 1」(森北出版)ISBN978-4627048133/「勉強法が変わる本」(岩波ジュニア新書) ISBN978-4005003501、      「速読速聴・英単語 Basic2400」(増進会出版社) ISBN978-4862900074
担当教員 西澤 一

目的・到達目標

(ア)数学的アイデアと数式変形の途中過程を、他者にも分る表現で紙上に記述することができる。
(イ)数直線上の点の位置変化と数の四則演算との関係を理解している。
(ウ)整式および分数式の四則計算をすることができる。
(エ)関数とグラフとの相互関係を理解し、基本問題の解法に利用することができる。
(オ)直線、折れ線、2次関数、および、分数関数、無理関数の数式とグラフを相互に変換することができる。
(カ)2次式を因数分解し、また、完全平方することができる。
(キ)高次関数を因数分解し、高次方程式を解くことができる。
(ク)不等式とグラフにおける範囲との関係を理解し、不等式の解法に利用できる。
(ケ)毎分100語程度で、断続的に読み上げられる基礎語彙からなる英文を聴き取り、3割程度を書き取ることができる。

ルーブリック

理想的な到達レベルの目安標準的な到達レベルの目安未到達レベルの目安
評価項目(ア)数学的アイデアと数式変形の途中過程を、他者にもよく分る表現で紙上に詳細に記述することができる。数学的アイデアと数式変形の途中過程を、他者にも分る表現で紙上に記述することができる。数学的アイデアと数式変形の途中過程を、紙上に記述することができない。
評価項目(イ)数直線上の点の位置変化と数の四則演算との関係をよく理解している。数直線上の点の位置変化と数の四則演算との関係を理解している。数直線上の点の位置変化と数の四則演算との関係を理解していない。
評価項目(ウ)整式および分数式の四則計算を正確にすることができる。整式および分数式の四則計算をすることができる。整式および分数式の四則計算をすることができない。

学科の到達目標項目との関係

教育方法等

概要:
既習の知識を再構成するとともに、電気電子工学の専門科目を履修するに際し不可欠な文字式の計算、方程式の解法、数式とグラフの関係等の考え方、手法を解説し、演習を通して定着させる。本講では特に、数式とグラフの関係を重視して学ぶ。基礎数学は、道具のように使いこなせるまで習熟することが大切であるので、中学校、および、数学系科目で履修した分野も含めて、豊富な演習を行う。また、英文専門書使用に備え、英文多読を課題学習として課す。
授業の進め方と授業内容・方法:
注意点:
原則として、毎回、演習(中学校、および、高専1年の数学系科目で学んだ内容を含む)を行い、演習得点が指定水準未満の学生には、課外に進度別演習を行う。また、演習の累積得点は、小テスト受験の条件とする。小テストには、英文聴き取り(5%)を含む。課題は英文多読(半年間で50冊以上、延2万語以上)である。

授業計画

授業内容・方法 週ごとの到達目標
前期
1stQ
1週 数による表現:数直線上の点と四則演算による位置変化(平行移動、回転)      教科書 p1~9 数直線上の点の位置変化と数の四則演算との関係を理解している。
2週 整式の計算:乗除、展開と因数分解                            教科書 p12~24 整式の四則計算をすることができる。
3週 分数式の計算:数式変形の考え方、原則と実践                     教科書 p24~31 分数式の四則計算をすることができる。
4週 1次関数とグラフ:直線の方程式、絶対値と折れ線の方程式、領域による場合分け プリント 関数とグラフとの相互関係を理解し、基本問題の解法に利用することができる。直線、折れ線の数式とグラフを相互に変換することができる。
5週 2次関数とグラフ:対称性、頂点、x軸との交点、グラフの平行移動        教科書 p32~49, p86~92 2次関数の数式とグラフを相互に変換することができる。
6週 2次関数とグラフ:対称性、頂点、x軸との交点、グラフの平行移動        教科書 p32~49, p86~92 2次関数の数式とグラフを相互に変換することができる。
7週 完全平方による2次方程式の解法:その考え方と方法               プリント 2次式を因数分解し、また、完全平方することができる。
8週 2次方程式の解と係数の関係:グラフの位置、形との関係               教科書 p49~65 2次式を因数分解し、また、完全平方することができる。
2ndQ
9週 高次関数とグラフ、剰余の定理、高次方程式:因数分解の効用        教科書 p76~85 高次関数を因数分解し、高次方程式を解くことができる。
10週 分数関数のグラフと分数方程式、不等式:特徴点、漸近線、無限大           教科書 p86~94 分数関数の数式とグラフを相互に変換することができる。
11週 無理式の計算、分母の有理化、無理関数のグラフと無理方程式、不等式       教科書 p94~96 無理関数の数式とグラフを相互に変換することができる。
12週 指数関数のグラフ、指数法則、累乗根:指数的変化の特徴         教科書 p101~111 指数関数の数式とグラフを相互に変換することができる。
13週 数学の効果的な学習法:過程の重要性、有意味記憶と無意味記憶           「勉強法が変わる本」 数学的アイデアと数式変形の途中過程を、他者にも分る表現で紙上に記述することができる。
14週 将来専門英文書を読むための効果的な英語学習法:英文多読、多聴と語彙、文法学習との関係 英文多読、多聴と語彙、文法学習との関係を理解している
15週 基礎英語の演習:日常会話で使われる英文を用いた聴き取り 英文教材 毎分100語程度で、断続的に読み上げられる基礎語彙からなる英文を聴き取り、3割程度を書き取ることができる。
16週

モデルコアカリキュラムの学習内容と到達目標

分類分野学習内容学習内容の到達目標到達レベル授業週

評価割合

定期試験課題小テスト合計
総合評価割合401050100
基礎的能力401050100