線形数学ⅡA

科目基礎情報

学校 豊田工業高等専門学校 開講年度 平成30年度 (2018年度)
授業科目 線形数学ⅡA
科目番号 02124 科目区分 一般 / 選択必修(数)
授業形態 講義 単位の種別と単位数 履修単位: 1
開設学科 情報工学科 対象学年 2
開設期 前期 週時間数 2
教科書/教材 「新編高専の数学2」 田代 嘉宏、難波 完爾共著(森北出版) ISBN:978-4-627-04823-2/「新編高専の数学2問題集」 田代 嘉宏著(森北出版) ISBN:978-4-627-04852-2
担当教員 髙村 明,米澤 佳己

到達目標

(ア)ベクトルの基本演算(内積を含む)ができる。
(イ)直線・平面・球の方程式を求めることができる。
(ウ)行列の基本的計算(積も含む)ができる。また、逆行列が求められ、連立方程式へ応用することができる。

ルーブリック

理想的な到達レベルの目安標準的な到達レベルの目安未到達レベルの目安
評価項目(ア)ベクトルの演算(内積を含む)ができ、応用問題を解くことができる。ベクトルの基本演算(内積を含む)ができる。ベクトルの基本演算(内積を含む)ができない。
評価項目(イ)直線・平面・球の方程式の応用問題を解くことができる。直線・平面・球の方程式を求めることができる。直線・平面・球の方程式を求めることができない。
評価項目(ウ)行列の計算(積も含む)および逆行列を求めることができ、応用問題を解くことができる。行列の基本的計算(積も含む)ができる。また、逆行列を求め、連立方程式へ応用することができる。行列の基本的計算(積も含む)ができない。また、逆行列を求めることができない。

学科の到達目標項目との関係

本校教育目標 ②

教育方法等

概要:
前半では、空間座標における図形のベクトル方程式を用いて空間での図形の位置関係が理解されることを学習する。また、ベクトル演算の拡張として、行列演算を紹介する。行列の基礎計算の修得を目指し、逆行列の応用まで学ぶ。この逆行列を含む行列演算の応用として、連立方程式の行列を用いた解法を学ぶ。
授業の進め方と授業内容・方法:
注意点:
「高専の数学問題集」は、講義中に演習問題として使うことが多いので必ず携帯すること。

授業計画

授業内容・方法 週ごとの到達目標
前期
1週 空間座標と用語の定義 空間座標と用語の定義を理解する。
2週 空間ベクトルの和やスカラー倍 空間ベクトルの和やスカラー倍を計算することができる。
3週 空間ベクトルの和やスカラー倍 空間ベクトルの和やスカラー倍を計算することができる。
4週 空間ベクトルの内積 空間ベクトルの内積を計算することができる。
5週 空間ベクトルの内積 空間ベクトルの内積を計算することができる。
6週 平面・空間ベクトルの基本演算・内積計算 平面・空間ベクトルの基本演算・内積計算ができる。
7週 空間内の直線とそのベクトル方程式 空間内の直線とそのベクトル方程式を求めることができる。
8週 平面の方程式 平面の方程式を求めることができる。
9週 球の方程式 球の方程式を求めることができる。
10週 復習と演習1 これまでの内容を総括的に理解する。
11週 行列の定義と基本演算(和・差・実数倍・積) 行列の定義と基本演算(和・差・実数倍・積)ができる。
12週 逆行列と正則行列 正則行列の意味を理解し、逆行列を求めることができる。
13週 連立1次方程式 行列を利用して連立1次方程式を解くことができる。
14週 行列式の定義といろいろな性質 行列式の定義といろいろな性質を理解する。
15週 復習と演習2 前期の内容を総括的に理解する。
16週

評価割合

中間試験定期試験課題合計
総合評価割合305020100
基礎的能力305020100