解析学A

科目基礎情報

学校 豊田工業高等専門学校 開講年度 平成30年度 (2018年度)
授業科目 解析学A
科目番号 34121 科目区分 専門 / 選択
授業形態 講義 単位の種別と単位数 学修単位: 1
開設学科 情報工学科 対象学年 4
開設期 前期 週時間数 前期:2 後期:0
教科書/教材 「新編 高専の数学3(第2版)」(森北出版) ISBN:978-4-627-04833-1/「新編 高専の数学3 問題集」 ISBN:978-4-627-04862-1,教材プリント
担当教員 筒石 奈央

到達目標

(ア)べき級数の収束・発散について理解している。
(イ)関数の基礎的な展開ができる。また、基礎的な近似計算ができる。
(ウ)2変数関数の極限と偏微分について理解し、いろいろな2変数関数の偏微分の計算ができる。また、合成関数の偏微分の公式を用いることで偏微分の計算ができる。

ルーブリック

理想的な到達レベルの目安標準的な到達レベルの目安未到達レベルの目安
評価項目(ア)べき級数の収束・発散について理解し、それに関する応用問題が解ける。べき級数の収束・発散について理解し、それに関する基本的な問題が解ける。べき級数の収束・発散についての基本的な問題が解けない。
評価項目(イ)関数の展開に関する応用問題が解ける。また、関数の近似計算に関する応用問題が解ける。関数の展開に関する基本的な問題が解ける。また、関数の近似計算に関する基本的な問題が解ける。関数の展開に関する基本的な問題が解けない。また、関数の近似計算に関する基本的な問題が解けない。
評価項目(ウ)2変数関数の極限と偏微分について理解し、偏微分の応用問題が解ける。また、合成関数の偏微分の公式を用いた偏微分の応用問題が解ける。2変数関数の極限と偏微分について理解し、偏微分の基本的な問題が解ける。また、合成関数の偏微分の公式を用いた偏微分の基本的な問題が解ける。偏微分の基本的な問題が解けない。また、合成関数の偏微分の公式を用いた偏微分の基本的な問題が解けない。

学科の到達目標項目との関係

学習・教育到達度目標 A4, JABEE c, 本校教育目標 ②

教育方法等

概要:
前半で、微分の応用として、関数などを近似する方法を学習する。初等関数の微小量による展開方法を学ぶ。後半では、1変数関数の微分の拡張として、2変数関数の増減を調べるための道具である偏微分について学習する。偏微分の基本的な計算、陰関数の微分に関連した計算などの演習を行う。
授業の進め方と授業内容・方法:
注意点:

授業計画

授業内容・方法 週ごとの到達目標
前期
1週 べき級数の収束・発散 べき級数の収束・発散について理解する。
2週 べき級数の収束・発散 べき級数の収束・発散に関する問題が解ける。
3週 初等関数の高次導関数 高次導関数の定義を理解する。
4週 初等関数の高次導関数 いろいろな関数の高次導関数が求められる。
5週 テイラー展開やマクローリン展開 関数の展開ができる。
6週 近似式の誤差 展開を用いた近似法を理解する。
7週 近似式の誤差 近似計算ができる。
8週 2変数関数の定義およびその意味(基本的な2変数関数のグラフの概形) 2変数関数の定義およびその意味を理解する。
9週 2変数関数の定義およびその意味(基本的な2変数関数のグラフの概形) 基本的な2変数関数の定義域やグラフの概形についての問題が解ける。
10週 偏微分(偏微分の定義、基本的な関数の偏微分の計算) 2変数関数の極限と偏微分の定義について理解する。
11週 偏微分(偏微分の定義、基本的な関数の偏微分の計算) 2変数関数の極限と偏微分についての計算ができる。
12週 合成関数の偏微分(公式の説明およびそれを用いた偏微分の計算) 合成関数の偏微分の公式を理解する。
13週 合成関数の偏微分(公式の説明およびそれを用いた偏微分の計算) 合成関数の偏微分の公式を用いた偏微分の計算ができる。
14週 演習 演習の問題が解ける。
15週 前期の総まとめ 前期の内容を総括的に理解する。
16週

評価割合

中間試験定期試験課題合計
総合評価割合306010100
専門的能力306010100