数学講究

科目基礎情報

学校 鈴鹿工業高等専門学校 開講年度 平成31年度 (2019年度)
授業科目 数学講究
科目番号 0159 科目区分 一般 / 必修
授業形態 授業 単位の種別と単位数 履修単位: 1
開設学科 材料工学科 対象学年 3
開設期 後期 週時間数 2
教科書/教材 教科書:本校数学教室作成の教科書「総合基礎数学問題集」 参考書:1~3年次の数学の授業で使用した教科書,問題集. 実用数学技能検定要点整理数学検定2級(日本数学検定協会)
担当教員 伊藤 裕貴

到達目標

<この授業の到達目標>
3学年までに習う数学の基礎的な事項を理解し,その運用力を身につけている.

ルーブリック

理想的な到達レベルの目安標準的な到達レベルの目安未到達レベルの目安
評価項目1 多項式や分数式,無理式,三角関数,指数,対数関数,場合の数等を理解し,様々な問題で適切に応用できる.多項式や分数式,無理式,三角関数,指数,対数関数,場合の数等を理解し,典型的な問題で適切に応用できる.多項式や分数式,無理式,三角関数,指数,対数関数,場合の数等を理解せず,問題を解けない.
評価項目2 平面や空間に関するベクトルや行列の基礎を理解し,様々な問題で計算応用できる .平面や空間に関するベクトルや行列の基礎を理解し,典型的な問題で計算応用できる .平面や空間に関するベクトルや行列の基礎を理解せず,計算や問題への応用ができない .
評価項目3微分積分の基礎を定義に基づいて正確に理解,計算でき,様々な問題に応用できる.微分積分の基礎を理解し計算でき,典型的な問題に応用できる.微分積分の基礎を理解せず,計算や問題への応用ができない. 

学科の到達目標項目との関係

教育方法等

概要:
現在までに学んだ数学の中で,専門分野の学習に必要な基本的な数学の知識を確実に身につける.
授業の進め方と授業内容・方法:
すべての授業の内容は,学習・教育到達目標(B)<基礎>及びJabee基準1の(2)(c)に対応する.
注意点:
<到達目標の評価方法と基準>
下記授業計画の「到達目標」1~12を網羅した問題からなる中間試験,定期試験で,目標の達成度を評価する.達成度評価における各到達目標の重みは概ね均等とするが評価結果が百点法で60点以上の場合に目標の達成とする.
<学業成績の評価方法および評価基準> 20%を授業中行う基本問題の小テストで評価し,残り80%を後期中間と学年末試験が占める割合とする.また後期前半評価が60点に達しなかった者には再試験を課し,再試験の成績が上回った場合には,60点を上限として後期中間試験の成績を置き換えるものとする.
<単位修得要件> 学業成績で60点以上を取得すること.[レポート等] 後期中間試験の評価が60点未満の者には冬休みの課題提出を義務とする.
<あらかじめ要求される基礎知識の範囲> 1,2学年までに学んだ基本的な事柄.本教科は基礎数学A,B ,微分積分Ⅰ,線形代数Ⅰの学習が基礎となる教科である.
<備項>専門分野を理解してゆくための欠くことのできない予備知識なので,完璧に理解しななければならい.本教科は後に学習する数学特講Ⅰ,Ⅱや応用数学Ⅰの基礎にもあたる教科である.

授業計画

授業内容・方法 週ごとの到達目標
後期
1週 2次関数・方程式・不等式 1 2次式に関する基本を理解し応用問題を解くことができる.
2週 恒等式・高次方程式・不等式 2 恒等式や,剰余の定理,因数定理を理解し,計算や証明に使える.
3週 場合の数・図形 3 順列・組み合わせ等を理解し使い分けや応用ができる.
4週 三角関数 4 三角関数に関する基本を理解し,その計算ができる.
5週 いろいろな関数 5 指数・対数に関する基本を理解し,その計算ができる.
6週 平面ベクトルと行列 6 ベクトルの和・低数倍や内積,外積や2×2行列の演算等を理解し応用できる.
7週 復習と演習 1, 2, 3, 4, 5, 6.
8週 中間テスト これまでに学習した内容を説明し,諸量を求めることができる.
9週 空間ベクトルと直線・平面 7 直線や平面とベクトルの関係を把握している.
10週 空間ベクトルの外積・スカラー三重積 8 ベクトルを用いて図形に関する問題を解くことができる.
11週 微分法 9 関数の極限や微分係数の意味を理解し計算できる.
12週 微分の応用 10 増減表の利用等微分の応用問題が解ける
13週 不定積分 11 不定積分の定義を理解し積分計算ができる.
14週 定積分 12 定積分の定義を理解し計算や応用できる.
15週 定積分とその応用 12 定積分の定義を理解し計算や応用できる.
16週

評価割合

試験課題(小テスト含む)相互評価態度発表その他合計
総合評価割合80200000100
配点80200000100