数値計算法

科目基礎情報

学校 舞鶴工業高等専門学校 開講年度 令和03年度 (2021年度)
授業科目 数値計算法
科目番号 0142 科目区分 専門 / 選択
授業形態 授業 単位の種別と単位数 学修単位: 2
開設学科 電子制御工学科 対象学年 4
開設期 前期 週時間数 2
教科書/教材 川田昌克「Scilab で学ぶわかりやすい数値計算法」(森北出版)
担当教員 川田 昌克

目的・到達目標

1 非線形方程式の数値計算アルゴリズムを説明できる。
2 連立方程式の数値計算アルゴリズムを説明できる。
3 データを補間/近似する方法を説明できる。
4 数値積分のアルゴリズムを説明できる。
5 微分方程式の数値計算アルゴリズムを説明できる。
6 数値計算アルゴリズムを実装するプログラムを作成できる。

ルーブリック

理想的な到達レベルの目安標準的な到達レベルの目安未到達レベルの目安
評価項目1非線形方程式の数値計算アルゴリズムを詳しく説明できる。非線形方程式の数値計算アルゴリズムを説明できる。非線形方程式の数値計算アルゴリズムを説明できない。
評価項目2連立方程式の数値計算アルゴリズムを詳しく説明できる。連立方程式の数値計算アルゴリズムを説明できる。連立方程式の数値計算アルゴリズムを説明できない。
評価項目3データを補間/近似する方法を詳しく説明できる。データを補間/近似する方法を説明できる。データを補間/近似する方法を説明できない。
評価項目4数値積分のアルゴリズムを詳しく説明できる。数値積分のアルゴリズムを説明できる。数値積分のアルゴリズムを説明できない。
評価項目5微分方程式の数値計算アルゴリズムを詳しく説明できる。微分方程式の数値計算アルゴリズムを説明できる。微分方程式の数値計算アルゴリズムを説明できない。
評価項目6数値計算アルゴリズムを実装するプログラムを十分に作成できる。数値計算アルゴリズムを実装するプログラムを作成できる。数値計算アルゴリズムを実装するプログラムを作成できない。

学科の到達目標項目との関係

学習・教育到達度目標 (H) 説明 閉じる

教育方法等

概要:
【授業目的】
ロボットの開発過程においては,実際にロボットを動かす前にシミュレーションを行い,事前に解析を行うことが多い。そのためには,ロボットの動きを表す微分方程式をコンピュータにより数値的に解く必要がある。本科目では,このように解析的に解くことが困難な数学の問題を,コンピュータを駆使して数値的に解く手法について学ぶ。

【Course Objectives】
In the development process of a robot, we often analyze the motion of the robot by the simulation before actually driving it. Therefore, it is necessary to gain the numerical solution of the differential equation that represents the motion of the robot by the use of the computer. In this lecture, we learn the technique of various basic numerical analyses.

授業の進め方と授業内容・方法:
【授業方法】
講義を中心に授業を進め,主にパワーポイントおよび黒板を使用し,教科書の内容を詳しく説明する。毎回,5 名程度の学生に質問する。

参考書:
藪 忠司,伊藤 惇「数値計算法」(コロナ社)
二宮市三 編「数値計算のつぼ」(共立出版)
櫻井鉄也「MATLAB/Scilab で理解する数値計算」(東京大学出版会)
上坂吉則「MATLAB+Scilab プログラミング事典」(ソフトバンククリエイティブ)

【学習方法】
1.授業では,スライドや黒板の説明は必ずノートにとり,わからないところがあれば質問する。質問に答えられるようにする。
2.Moodle に毎週の講義資料を掲載するので,適宜,予習および復習に利用すること。
3.本科目は学修単位科目であり,自学自習により講義内容の理解を深めるため,適宜,
  ・演習課題
  ・Scilab を利用したプログラム課題
 を与えるので解答する(Moodle での課題提出を求める)。

注意点:
【定期試験の実施方法】
中間・期末の 2 回の試験を行う。
試験時間は 50 分とする。
関数電卓の持ち込みを許可する。

【成績の評価方法・評価基準】
中間・期末試験の平均値で定期試験結果を評価(60%)し,演習課題の評価(20%),プログラム課題の評価(20%)との合計をもって総合成績とする。到達目標の各項目の理解の到達度を評価基準とする。

【履修上の注意】
提出課題は必ず締切日時までに提出する。提出が遅れた場合,減点する。
毎授業には電卓を持参すること。
講義は 4S 教室で授業を行う。
コンピュータ演習を行う場合は,S 棟 CAD/CAM 教室で授業を行う(事前に連絡する)。

【教員の連絡先】
研究室 B棟2階(B-208)
内線電話 8959
e-mail: kawataアットマークmaizuru-ct.ac.jp(アットマークは@に変えること。)

授業の属性・履修上の区分

アクティブラーニング
ICT 利用
遠隔授業対応
実務経験のある教員による授業

授業計画

授業内容・方法 週ごとの到達目標
前期
1stQ
1週 シラバス内容の説明
【非線形方程式】
 2分法,はさみうち法
〔演習課題〕2分法,はさみうち法
2週 【非線形方程式】
 ニュートン法,割線法
〔演習課題〕ニュートン法,割線法
3週 【非線形方程式】
 テイラー展開とニュートン法,ベイリー法
〔演習課題〕ベイリー法
4週 Scilab演習:Scilabの使用方法
〔演習課題〕Scilab課題
5週 【連立1次方程式の数値解法】
 ガウスの消去法,ピボット操作
〔演習課題〕ガウスの消去法
6週 【連立1次方程式の数値解法】
 掃き出し法,逆行列の算出
〔演習課題〕掃き出し法,逆行列の算出
7週 【連立1次方程式の数値解法】
 ヤコビ法,ガウス・ザイデル法
〔演習課題〕ヤコビ法,ガウス・ザイデル法
8週 中間試験
2ndQ
9週 中間試験問題の解説
【関数の近似】
 ラグランジュ補間
〔演習課題〕ラグランジュ補間
10週 【関数の近似】
 スプライン補間
〔演習課題〕スプライン補間
11週 【関数の近似】
 最小二乗法
〔演習課題〕最小二乗法
12週 【数値積分】
 区分求積法,中点法,台形公式
〔演習課題〕区分求積法,中点法,台形公式
13週 【数値積分】
 シンプソンの公式,数値積分の誤差
〔演習課題〕シンプソンの公式,数値積分の誤差
14週 【常微分方程式の数値解法】
 オイラー法
〔演習課題〕オイラー法
15週 【常微分方程式の数値解法】
 ルンゲ・クッタ法
〔演習課題〕ルンゲ・クッタ法
16週 (15週目の後に期末試験を実施)
期末試験返却・達成度確認

評価割合

試験発表相互評価態度ポートフォリオその他合計
総合評価割合60000400100
基礎的能力0000000
専門的能力60000400100
分野横断的能力0000000