画像工学

科目基礎情報

学校 舞鶴工業高等専門学校 開講年度 平成29年度 (2017年度)
授業科目 画像工学
科目番号 0145 科目区分 専門 / 選択
授業形態 授業 単位の種別と単位数 学修単位: 2
開設学科 総合システム工学専攻 対象学年 専1
開設期 前期 週時間数 2
教科書/教材 岡崎彰夫 著「はじめての画像処理技術」(森北出版株式会社)
担当教員 芦澤 恵太

到達目標

1.輝度分布作成のアルゴリズムが理解でき,雑音除去・2 値化・エッジ抽出を行うプログラムが作成できる。
2.ハフ変換・アフィン変換が理解できるとともに,画像処理に幾何学的変換を応用できる。
3.画像圧縮のアルゴリズムが理解でき,直交変換に基づく簡単な圧縮伸張プログラムが作成できる。
4.メディア情報の主要な表現形式や処理技法について説明できる。

ルーブリック

理想的な到達レベルの目安標準的な到達レベルの目安未到達レベルの目安
評価項目1輝度分布作成のアルゴリズムが理解でき,雑音除去・2 値化・エッジ抽出を行うプログラムが作成できる。雑音除去・2 値化・エッジ抽出を行うプログラムが作成できる。雑音除去・2 値化・エッジ抽出を行うプログラムが作成できない。
評価項目2ハフ変換・アフィン変換が理解できるとともに,画像処理に幾何学的変換を応用できる。画像処理に幾何学的変換を応用できる。画像処理に幾何学的変換を応用できない。
評価項目3画像圧縮のアルゴリズムが理解でき,直交変換に基づく簡単な圧縮伸張プログラムが作成できる。 直交変換に基づく簡単な圧縮伸張プログラムが作成できる。 直交変換に基づく簡単な圧縮伸張プログラムが作成できない。
評価項目4メディア情報の主要な表現形式や処理技法について説明できる。少なくとも一つの表現形式や処理技法について説明できる。メディア情報の主要な表現形式や処理技法について説明できない。

学科の到達目標項目との関係

(H) 説明 閉じる

教育方法等

概要:
【授業目的】
1.画像のディジタル処理の基礎事項を理解する。
2.画像圧縮のアルゴリズムを理解し,プログラミングを行う。
3.目的とする事例を行うためのアルゴリズムを組み立て,提供できる力を養う。
【Course Objectives】
1. To learn the algorithms of binary images, and image contrast enhancement and contrast smoothing.
2. To learn to create an image compression program based on various kinds of algorithms.
3. To construct various kinds of algorithms of image processing for engineering applications.
授業の進め方・方法:
講義を中心に授業を進める。毎回の授業において演習問題を、単元毎に課題問題を与える。特に課題問題はプログラム作成に重点をおく。
授業展開の中では,理解度の確認のために課題の発表を求めることがある。
注意点:
本科目は授業での学習と授業外での自己学習で成り立つものである。
画像工学の理解には基本的な数学力が必要となる。各単元の事前の自己学習において既習内容は復習しておくこと。
また,画像工学の理解を深め,応用力を養うために毎回の演習問題および単元毎に課す課題問題を,4時間程度の自己学習として義務付け,その回答を指定日時までに提出してもらう。

研究室 A棟3階(A-317)
内線電話 8966
e-mail: ashizawaアットマークmaizuru-ct.ac.jp (アットマークは@に変えること。)

授業計画

授業内容 週ごとの到達目標
前期
1stQ
1週 シラバス内容の説明 輝度分布作成のアルゴリズムが理解でき,雑音除去・2 値化・エッジ抽出を行うプログラムが作成できる。
2週 画像処理技術の概要 輝度分布作成のアルゴリズムが理解でき,雑音除去・2 値化・エッジ抽出を行うプログラムが作成できる。
3週 ディジタル画像とは メディア情報の主要な表現形式や処理技法について説明できる。
4週 静止画像のフォーマット 輝度分布作成のアルゴリズムが理解でき,雑音除去・2 値化・エッジ抽出を行うプログラムが作成できる。
5週 前処理 (雑音除去,2値化 等) 輝度分布作成のアルゴリズムが理解でき,雑音除去・2 値化・エッジ抽出を行うプログラムが作成できる。
6週 特徴抽出①エッジ抽出,細線化 等 ハフ変換・アフィン変換が理解できるとともに,画 像処理に幾何学的変換を応用できる。
7週 特徴抽出②ハフ変換 等 ハフ変換・アフィン変換が理解できるとともに,画 像処理に幾何学的変換を応用できる。
8週 特徴抽出③テンプレートマッチング
2ndQ
9週 画像の圧縮方式①MHおよび MR符号化方式,JBEG方式 画像圧縮のアルゴリズムが理解でき,直交変換に基づく簡単な圧縮伸張プログラムが作成できる。
10週 画像の圧縮方式②アダマール変換符号化方式 画像圧縮のアルゴリズムが理解でき,直交変換に基づく簡単な圧縮伸張プログラムが作成できる。
11週 画像の圧縮方式③コサイン変換符号化方式 画像圧縮のアルゴリズムが理解でき,直交変換に基づく簡単な圧縮伸張プログラムが作成できる。
12週 画像の圧縮方式④JPEG方式 画像圧縮のアルゴリズムが理解でき,直交変換に基づく簡単な圧縮伸張プログラムが作成できる。
13週 画像処理技術の実現手法 メディア情報の主要な表現形式や処理技法について説明できる。
14週 応用事例 メディア情報の主要な表現形式や処理技法について説明できる。
15週 期末試験
16週 画像処理技術の将来展望と演習 メディア情報の主要な表現形式や処理技法について説明できる。

評価割合

試験発表相互評価態度ポートフォリオその他合計
総合評価割合60000400100
基礎的能力0000000
専門的能力60000400100
分野横断的能力0000000