概要:
一般・専門の別:専門
学習の分野:数学・物理
基礎となる学問分野:数物系科学/数学/基礎解析学
学習教育目標との関連:本科目は「③基礎となる専門性の深化」に相当する科目である。
授業の概要: これまで個別に学んできた数学を整理し,関数とグラフ,微分積分,線形代数等の単元を総合的に学び直し,演習によって総合力を定着させる。
授業の進め方・方法:
前期前半は,行列の応用を学習する。その後は,ほぼ毎時間,与えられた演習問題を解いていく。必要事項は解説する。夏休み,冬休みには課題に取り組み順次提出する。後期前半は,微分積分の応用を学習する。
4回の定期試験と学習到達度試験(同等に評価し50%)とレポート(50%)の合計で評価する。成績等によっては,再試験を行う(レポート課題を課す)こともある。再試験は80点を上限として本試験と同様に評価する。試験には教科書・ノート等の持ち込みを許可しない。
注意点:
履修上の注意:学年の課程修了のために,本科目履修(欠課時間数が所定授業時間数の3分の1以下)が必須である。
履修のアドバイス:事前に行う準備学習は,特になし。演習では間違えながら学ぶ姿勢がよい。最初は間違えてもよいのでまず手を動かして計算してみること。専用のノートを用意して自分の間違いや理解の進展を記録することを薦める。
基礎科目:基礎数学(1年),基礎数学演習(1),微分積分Ⅰ(2),基礎線形代数(2),総合理工演習(2)
関連科目:微分積分Ⅱ(3年),基礎微分方程式(3),一般物理学(3),力学Ⅰ(3),応用数学Ⅰ(4),応用数学Ⅱ(4),現代数学(5),複素解析(5),専門科目多数
受講上のアドバイス:授業開始時刻に遅れた場合,20分までは遅刻,それ以降は欠課として扱う。
分類 | 分野 | 学習内容 | 学習内容の到達目標 | 到達レベル | 授業週 |
基礎的能力 | 数学 | 数学 | 数学 | 累乗根の意味を理解し、指数法則を拡張し、計算に利用することができる。 | 3 | |
指数関数の性質を理解し、グラフをかくことができる。 | 3 | |
指数関数を含む簡単な方程式を解くことができる。 | 3 | |
対数の意味を理解し、対数を利用した計算ができる。 | 3 | |
対数関数の性質を理解し、グラフをかくことができる。 | 3 | |
対数関数を含む簡単な方程式を解くことができる。 | 3 | |
放物線、楕円、双曲線の図形的な性質の違いを区別できる。 | 3 | |
等差数列・等比数列の一般項やその和を求めることができる。 | 3 | |
総和記号を用いた簡単な数列の和を求めることができる。 | 3 | |
不定形を含むいろいろな数列の極限を求めることができる。 | 3 | |
無限等比級数等の簡単な級数の収束・発散を調べ、その和を求めることができる。 | 3 | |
ベクトルの定義を理解し、ベクトルの基本的な計算(和・差・定数倍)ができ、大きさを求めることができる。 | 3 | |
平面および空間ベクトルの成分表示ができ、成分表示を利用して簡単な計算ができる。 | 3 | |
平面および空間ベクトルの内積を求めることができる。 | 3 | |
問題を解くために、ベクトルの平行・垂直条件を利用することができる。 | 3 | |
空間内の直線・平面・球の方程式を求めることができる(必要に応じてベクトル方程式も扱う)。 | 3 | |
行列の定義を理解し、行列の和・差・スカラーとの積、行列の積を求めることができる。 | 3 | |
逆行列の定義を理解し、2次の正方行列の逆行列を求めることができる。 | 3 | |
行列式の定義および性質を理解し、基本的な行列式の値を求めることができる。 | 3 | |
線形変換の定義を理解し、線形変換を表す行列を求めることができる。 | 3 | |
合成変換や逆変換を表す行列を求めることができる。 | 3 | |
平面内の回転に対応する線形変換を表す行列を求めることができる。 | 3 | |
簡単な場合について、関数の極限を求めることができる。 | 3 | |
微分係数の意味や、導関数の定義を理解し、導関数を求めることができる。 | 3 | |
積・商の導関数の公式を用いて、導関数を求めることがができる。 | 3 | |
合成関数の導関数を求めることができる。 | 3 | |
三角関数・指数関数・対数関数の導関数を求めることができる。 | 3 | |
逆三角関数を理解し、逆三角関数の導関数を求めることができる。 | 3 | |
関数の増減表を書いて、極値を求め、グラフの概形をかくことができる。 | 3 | |
極値を利用して、関数の最大値・最小値を求めることができる。 | 3 | |
簡単な場合について、関数の接線の方程式を求めることができる。 | 3 | |
2次の導関数を利用して、グラフの凹凸を調べることができる。 | 3 | |
関数の媒介変数表示を理解し、媒介変数を利用して、その導関数を求めることができる。 | 3 | |
不定積分の定義を理解し、簡単な不定積分を求めることができる。 | 3 | |
置換積分および部分積分を用いて、不定積分や定積分を求めることができる。 | 3 | |
定積分の定義と微積分の基本定理を理解し、簡単な定積分を求めることができる。 | 3 | |
分数関数・無理関数・三角関数・指数関数・対数関数の不定積分・定積分を求めることができる。 | 3 | |
簡単な場合について、曲線で囲まれた図形の面積を定積分で求めることができる。 | 3 | |
簡単な場合について、曲線の長さを定積分で求めることができる。 | 3 | |
簡単な場合について、立体の体積を定積分で求めることができる。 | 3 | |
簡単な1変数関数の局所的な1次近似式を求めることができる。 | 3 | |
1変数関数のテイラー展開を理解し、基本的な関数のマクローリン展開を求めることができる。 | 3 | |
オイラーの公式を用いて、複素数変数の指数関数の簡単な計算ができる。 | 3 | |
2変数関数の定義域を理解し、不等式やグラフで表すことができる。 | 3 | |
合成関数の偏微分法を利用して、偏導関数を求めることができる。 | 3 | |
簡単な関数について、2次までの偏導関数を求めることができる。 | 3 | |
偏導関数を用いて、基本的な2変数関数の極値を求めることができる。 | 3 | |
2重積分の定義を理解し、簡単な2重積分を累次積分に直して求めることができる。 | 3 | |
極座標に変換することによって2重積分を求めることができる。 | 3 | |
2重積分を用いて、簡単な立体の体積を求めることができる。 | 3 | |