概要:
一般・専門の別:専門
学習の分野:物理
基礎となる学問分野:数物系科学/物理学/物理一般
学習教育目標との関連:本科目は学習教育目標「②確かな基礎科学の知識修得」に相当する科目である。
授業の概要:高等学校課程に対応する物理の知識を確実なものとするため,力学,熱力学,波動,電磁気学について演習を行う。
授業の進め方・方法:
授業の方法:事前に問題を当てておくので,授業の始まる前に板書してもらい,それによって授業を展開していく。問題集の力と運動,温度と熱,波と光,電磁気のレベルBとCの問題を扱う。
成績評価方法:2回の定期試験を50%(均等に重み付け),演習,課題レポートなどを50%とする。成績不振者には補講と再試験を課して,60点を上限に定期試験の成績を置換する。
注意点:
履修上の注意:学年の課程修了のために、本科目履修(欠課時間数が所定授業時間数の3分の1以下)が必須である。
履修のアドバイス:問題を良く考え,よく計算し,あるいはよく調べて解答を作成すること。また課題レポートは期限までに必ず提出すること。事前に行う準備学習として,指示された演習問題を解いておくこと。
基礎科目:物理Ⅰ(1年),物理Ⅱ(2),総合理工基礎(1),電気電子回路(2),基礎数学(1),微分積分Ⅰ(2)
関連科目:力学Ⅰ(3年),力学(3),力学(3),電磁気学概論(3),熱力学概論(3),一般物理学(3)
受講上のアドバイス:問題をじっくり考え,計算してよく理解すること。授業中にメール等の操作をしている場合には退室してもらうことがある。授業開始25分以内であれば遅刻とし,遅刻3回で1欠課とする。
分類 | 分野 | 学習内容 | 学習内容の到達目標 | 到達レベル | 授業週 |
基礎的能力 | 自然科学 | 物理 | 力学 | 速度と加速度の概念を説明できる。 | 3 | |
平均の速度、平均の加速度を計算することができる。 | 3 | |
直線および平面運動において、2物体の相対速度、合成速度を求めることができる。 | 3 | |
等加速度直線運動の公式を用いて、物体の座標、時間、速度に関する計算ができる。 | 3 | |
平面内を移動する質点の運動を位置ベクトルの変化として扱うことができる。 | 3 | |
物体の変位、速度、加速度を微分・積分を用いて相互に計算することができる。 | 3 | |
自由落下、及び鉛直投射した物体の座標、速度、時間に関する計算ができる。 | 3 | |
水平投射、及び斜方投射した物体の座標、速度、時間に関する計算ができる。 | 3 | |
物体に作用する力を図示することができる。 | 3 | |
力の合成と分解をすることができる。 | 3 | |
質点にはたらく力のつりあいの問題を解くことができる。 | 3 | |
重力、抗力、張力、圧力について説明できる。 | 3 | |
フックの法則を用いて、弾性力の大きさを求めることができる。 | 3 | |
慣性の法則について説明できる。 | 3 | |
作用と反作用の関係について、具体例を挙げて説明できる。 | 3 | |
運動の法則について説明できる。 | 3 | |
運動方程式を用いた計算ができる。 | 3 | |
簡単な運動について微分方程式の形で運動方程式を立て、初期値問題として解くことができる。 | 3 | |
静止摩擦力がはたらいている場合の力のつりあいについて説明できる。 | 3 | |
最大摩擦力に関する計算ができる。 | 3 | |
動摩擦力に関する計算ができる。 | 3 | |
仕事と仕事率に関する計算ができる。 | 3 | |
物体の運動エネルギーに関する計算ができる。 | 3 | |
重力による位置エネルギーに関する計算ができる。 | 3 | |
弾性力による位置エネルギーに関する計算ができる。 | 3 | |
力学的エネルギー保存則を様々な物理量の計算に利用できる。 | 3 | |
物体の質量と速度から運動量を求めることができる。 | 3 | |
運動量の差が力積に等しいことを利用して、様々な物理量の計算ができる。 | 3 | |
運動量保存則を様々な物理量の計算に利用できる。 | 3 | |
周期、振動数など単振動を特徴づける諸量を求めることができる。 | 3 | |
単振動における変位、速度、加速度、力の関係を説明できる。 | 3 | |
等速円運動をする物体の速度、角速度、加速度、向心力に関する計算ができる。 | 3 | |
万有引力の法則から物体間にはたらく万有引力を求めることができる. | 3 | |
万有引力による位置エネルギーに関する計算ができる。 | 3 | |
波動 | 波の振幅、波長、周期、振動数、速さについて説明できる。 | 3 | |
横波と縦波の違いについて説明できる。 | 3 | |
波の重ね合わせの原理について説明できる。 | 3 | |
波の独立性について説明できる。 | 3 | |
2つの波が干渉するとき、互いに強めあう条件と弱めあう条件について計算できる。 | 3 | |
定常波の特徴(節、腹の振動のようすなど)を説明できる。 | 3 | |
ホイヘンスの原理について説明できる。 | 3 | |
波の反射の法則、屈折の法則、および回折について説明できる。 | 3 | |
弦の長さと弦を伝わる波の速さから、弦の固有振動数を求めることができる。 | 3 | |
気柱の長さと音速から、開管、閉管の固有振動数を求めることができる(開口端補正は考えない)。 | 3 | |
共振、共鳴現象について具体例を挙げることができる。 | 3 | |
一直線上の運動において、ドップラー効果による音の振動数変化を求めることができる。 | 3 | |
自然光と偏光の違いについて説明できる。 | 3 | |
光の反射角、屈折角に関する計算ができる。 | 3 | |
波長の違いによる分散現象によってスペクトルが生じることを説明できる。 | 3 | |