概要:
一般・専門の別:専門
学習の分野:二体系の力学,多体系の力学から始めて,剛体の力学を扱う。剛体の回転運動を解析する手法を学ぶ。
基礎となる学問分野:数物系科学/数学・物理学
学習教育目標との関連:本科目は総合理工学科学習・教育目標「③ 基盤となる専門性の深化」に相当する科目である。
技術者教育プログラムとの関連:本科目が主体的に関与する学習・教育到達目標は「B」である。
授業の進め方・方法:
授業の方法:講義形式の授業を進め,適宜,演習を行なう。演習では学生による解答の板書と解説を求める。課題レポートを課して学生の理解度を確認しながら授業を進める。
成績評価方法:2回の定期試験成績を70%(均等評価),平素の演習,レポートなどを30%とする。成績不振者には補講と再試験を課して,60点を上限に定期試験の成績を置換する。
注意点:
履修上の注意:
本科目は半期開講科目である。
学年の課程修了のために,本科目履修(欠課時間数が所定授業時間数の3分の1以下)が必須である。
3年生までの基本的な数学を修得していないと理解することが難しいので,折に触れて復習しておくこと。特に,微分,積分,ベクトルの演算。板書された解答例を写すだけでは役に立つ能力は獲得できない。理解する努力を惜しまないことが肝要である。
受講上のアドバイス:授業で扱う数式について,計算してよく理解すること。授業中にメール等の操作をしている場合
には退室してもらうことがある。授業開始25分以内であれば遅刻とし,遅刻3回で1欠課とする。
基礎科目:物理Ⅰ(1年),物理Ⅱ(2),力学Ⅰ(3),力学Ⅱ(3)
関連科目:物理学実験(4年),数理科学(4)卒業研究(5)
分類 | 分野 | 学習内容 | 学習内容の到達目標 | 到達レベル | 授業週 |
基礎的能力 | 自然科学 | 物理 | 力学 | 速度と加速度の概念を説明できる。 | 3 | |
平均の速度、平均の加速度を計算することができる。 | 3 | |
直線および平面運動において、2物体の相対速度、合成速度を求めることができる。 | 3 | |
等加速度直線運動の公式を用いて、物体の座標、時間、速度に関する計算ができる。 | 3 | |
平面内を移動する質点の運動を位置ベクトルの変化として扱うことができる。 | 3 | |
物体の変位、速度、加速度を微分・積分を用いて相互に計算することができる。 | 3 | |
自由落下、及び鉛直投射した物体の座標、速度、時間に関する計算ができる。 | 3 | |
水平投射、及び斜方投射した物体の座標、速度、時間に関する計算ができる。 | 3 | |
物体に作用する力を図示することができる。 | 3 | |
力の合成と分解をすることができる。 | 3 | |
質点にはたらく力のつりあいの問題を解くことができる。 | 3 | |
重力、抗力、張力、圧力について説明できる。 | 3 | |
フックの法則を用いて、弾性力の大きさを求めることができる。 | 3 | |
慣性の法則について説明できる。 | 3 | |
作用と反作用の関係について、具体例を挙げて説明できる。 | 3 | |
運動の法則について説明できる。 | 3 | |
運動方程式を用いた計算ができる。 | 3 | |
簡単な運動について微分方程式の形で運動方程式を立て、初期値問題として解くことができる。 | 3 | |
静止摩擦力がはたらいている場合の力のつりあいについて説明できる。 | 3 | |
最大摩擦力に関する計算ができる。 | 3 | |
動摩擦力に関する計算ができる。 | 3 | |
仕事と仕事率に関する計算ができる。 | 3 | |
物体の運動エネルギーに関する計算ができる。 | 3 | |
重力による位置エネルギーに関する計算ができる。 | 3 | |
弾性力による位置エネルギーに関する計算ができる。 | 3 | |
力学的エネルギー保存則を様々な物理量の計算に利用できる。 | 3 | |
物体の質量と速度から運動量を求めることができる。 | 3 | |
運動量の差が力積に等しいことを利用して、様々な物理量の計算ができる。 | 3 | |
運動量保存則を様々な物理量の計算に利用できる。 | 3 | |
周期、振動数など単振動を特徴づける諸量を求めることができる。 | 3 | |
単振動における変位、速度、加速度、力の関係を説明できる。 | 3 | |
等速円運動をする物体の速度、角速度、加速度、向心力に関する計算ができる。 | 3 | |
万有引力の法則から物体間にはたらく万有引力を求めることができる. | 3 | |
万有引力による位置エネルギーに関する計算ができる。 | 3 | |
力のモーメントを求めることができる。 | 3 | |
角運動量を求めることができる。 | 3 | |
角運動量保存則について具体的な例を挙げて説明できる。 | 3 | |
剛体における力のつり合いに関する計算ができる。 | 3 | |
重心に関する計算ができる。 | 3 | |
一様な棒などの簡単な形状に対する慣性モーメントを求めることができる。 | 3 | |
剛体の回転運動について、回転の運動方程式を立てて解くことができる。 | 3 | |