分類 | 分野 | 学習内容 | 学習内容の到達目標 | 到達レベル | 授業週 |
基礎的能力 | 数学 | 数学 | 数学 | 整式の加減乗除の計算や、式の展開ができる。 | 3 | 前1 |
因数定理等を利用して、4次までの簡単な整式の因数分解ができる。 | 3 | 前1 |
分数式の加減乗除の計算ができる。 | 3 | 前1 |
実数・絶対値の意味を理解し、絶対値の簡単な計算ができる。 | 3 | 前1 |
平方根の基本的な計算ができる(分母の有理化も含む)。 | 3 | 前1 |
複素数の相等を理解し、その加減乗除の計算ができる。 | 3 | 前1 |
1元連立1次不等式を解くことができる。 | 3 | 前1 |
基本的な2次不等式を解くことができる。 | 3 | 前1 |
解の公式等を利用して、2次方程式を解くことができる。 | 3 | 前1 |
因数定理等を利用して、基本的な高次方程式を解くことができる。 | 3 | 前1 |
簡単な連立方程式を解くことができる。 | 3 | 前1 |
無理方程式・分数方程式を解くことができる。 | 3 | 前1 |
1次不等式や2次不等式を解くことができる。 | 3 | 前1 |
恒等式と方程式の違いを区別できる。 | 3 | 前1 |
無理関数の性質を理解し、グラフをかくことができる。 | 3 | 前1 |
関数のグラフと座標軸との共有点を求めることができる。 | 3 | 前1 |
2次関数の性質を理解し、グラフをかくことができ、最大値・最小値を求めることができる。 | 3 | 前1 |
分数関数や無理関数の性質を理解し、グラフをかくことができる。 | 3 | 前1 |
簡単な場合について、関数の逆関数を求め、そのグラフをかくことができる。 | 3 | 前1 |
累乗根の意味を理解し、指数法則を拡張し、計算に利用することができる。 | 3 | 前1 |
指数関数の性質を理解し、グラフをかくことができる。 | 3 | 前1 |
指数関数を含む簡単な方程式を解くことができる。 | 3 | 前1 |
対数の意味を理解し、対数を利用した計算ができる。 | 3 | 前1 |
対数関数の性質を理解し、グラフをかくことができる。 | 3 | 前1 |
対数関数を含む簡単な方程式を解くことができる。 | 3 | 前1 |
三角比を理解し、三角関数表を用いて三角比を求めることができる。一般角の三角関数の値を求めることができる。 | 3 | 前1 |
角を弧度法で表現することができる。 | 3 | 前1 |
三角関数の性質を理解し、グラフをかくことができる。 | 3 | 前1 |
加法定理および加法定理から導出される公式等を使うことができる。 | 3 | 前1 |
三角関数を含む簡単な方程式を解くことができる。 | 3 | 前1 |
通る点や傾きから直線の方程式を求めることができる。 | 3 | 前1 |
2点間の距離を求めることができる。 | 3 | 前1 |
内分点の座標を求めることができる。 | 3 | 前1 |
2つの直線の平行・垂直条件を利用して、直線の方程式を求めることができる。 | 3 | 前1 |
簡単な場合について、円の方程式を求めることができる。 | 3 | 前1 |
積の法則と和の法則を利用して、簡単な事象の場合の数を数えることができる。 | 3 | 前1 |
簡単な場合について、順列と組合せの計算ができる。 | 3 | 前1 |
等差数列・等比数列の一般項やその和を求めることができる。 | 3 | 前1 |
総和記号を用いた簡単な数列の和を求めることができる。 | 3 | 前1 |
不定形を含むいろいろな数列の極限を求めることができる。 | 3 | 前1 |
無限等比級数等の簡単な級数の収束・発散を調べ、その和を求めることができる。 | 3 | 前1 |
ベクトルの定義を理解し、ベクトルの基本的な計算(和・差・定数倍)ができ、大きさを求めることができる。 | 3 | 前1 |
平面および空間ベクトルの成分表示ができ、成分表示を利用して簡単な計算ができる。 | 3 | 前1 |
平面および空間ベクトルの内積を求めることができる。 | 3 | 前1 |
問題を解くために、ベクトルの平行・垂直条件を利用することができる。 | 3 | 前1 |
空間内の直線・平面・球の方程式を求めることができる(必要に応じてベクトル方程式も扱う)。 | 3 | 前1 |
行列の和・差・数との積の計算ができる。 | 3 | 前1 |
行列の積の計算ができる。 | 3 | 前1 |
行列の定義を理解し、行列の和・差・スカラーとの積、行列の積を求めることができる。 | 3 | 前1 |
逆行列の定義を理解し、2次の正方行列の逆行列を求めることができる。 | 3 | 前1 |
行列式の定義および性質を理解し、基本的な行列式の値を求めることができる。 | 3 | 前1 |
線形変換の定義を理解し、線形変換を表す行列を求めることができる。 | 3 | 前1 |
合成変換や逆変換を表す行列を求めることができる。 | 3 | 前1 |
平面内の回転に対応する線形変換を表す行列を求めることができる。 | 3 | 前1 |
導関数の定義を理解している。 | 3 | 前7 |
簡単な場合について、関数の極限を求めることができる。 | 3 | 前7 |
微分係数の意味や、導関数の定義を理解し、導関数を求めることができる。 | 3 | 前7 |
積・商の導関数の公式を用いて、導関数を求めることがができる。 | 3 | 前7 |
合成関数の導関数を求めることができる。 | 3 | 前7 |
三角関数・指数関数・対数関数の導関数を求めることができる。 | 3 | 前7 |
逆三角関数を理解し、逆三角関数の導関数を求めることができる。 | 3 | 前7 |
関数の増減表を書いて、極値を求め、グラフの概形をかくことができる。 | 3 | 前7 |
極値を利用して、関数の最大値・最小値を求めることができる。 | 3 | 前7 |
簡単な場合について、関数の接線の方程式を求めることができる。 | 3 | 前7 |
2次の導関数を利用して、グラフの凹凸を調べることができる。 | 3 | 前7 |
関数の媒介変数表示を理解し、媒介変数を利用して、その導関数を求めることができる。 | 3 | 前7 |
微積分の基本定理を理解している。 | 3 | 前7 |
定積分の基本的な計算ができる。 | 3 | 前7 |
置換積分および部分積分を用いて、定積分を求めることができる。 | 3 | 前7 |
不定積分の定義を理解し、簡単な不定積分を求めることができる。 | 3 | 前7 |
置換積分および部分積分を用いて、不定積分や定積分を求めることができる。 | 3 | 前7 |
定積分の定義と微積分の基本定理を理解し、簡単な定積分を求めることができる。 | 3 | 前7 |
分数関数・無理関数・三角関数・指数関数・対数関数の不定積分・定積分を求めることができる。 | 3 | 前7 |
簡単な場合について、曲線で囲まれた図形の面積を定積分で求めることができる。 | 3 | 前7 |
簡単な場合について、曲線の長さを定積分で求めることができる。 | 3 | 前7 |
簡単な場合について、立体の体積を定積分で求めることができる。 | 3 | 前7 |
いろいろな関数の偏導関数を求めることができる。 | 3 | 前7 |
2変数関数の定義域を理解し、不等式やグラフで表すことができる。 | 3 | 前7 |
合成関数の偏微分法を利用して、偏導関数を求めることができる。 | 3 | 前7 |
簡単な関数について、2次までの偏導関数を求めることができる。 | 3 | 前7 |
偏導関数を用いて、基本的な2変数関数の極値を求めることができる。 | 3 | 前7 |
2重積分を累次積分になおして計算することができる。 | 3 | 前7 |
2重積分の定義を理解し、簡単な2重積分を累次積分に直して求めることができる。 | 3 | 前7 |
極座標に変換することによって2重積分を求めることができる。 | 3 | 前7 |
2重積分を用いて、簡単な立体の体積を求めることができる。 | 3 | 前7 |
基本的な変数分離形の微分方程式を解くことができる。 | 3 | 前7 |
微分方程式の意味を理解し、簡単な変数分離形の微分方程式を解くことができる。 | 3 | 前7 |
簡単な1階線形微分方程式を解くことができる。 | 3 | 前7 |
定数係数2階斉次線形微分方程式を解くことができる。 | 3 | 前7 |
独立試行の確率、余事象の確率、確率の加法定理、排反事象の確率を理解し、簡単な場合について、確率を求めることができる。 | 3 | 前7 |
条件付き確率、確率の乗法定理、独立事象の確率を理解し、簡単な場合について確率を求めることができる。 | 3 | 前7 |
1次元のデータを整理して、平均・分散・標準偏差を求めることができる。 | 3 | 前7 |
自然科学 | 物理 | 力学 | 速度と加速度の概念を説明できる。 | 3 | 前7 |
直線および平面運動において、2物体の相対速度、合成速度を求めることができる。 | 3 | 前7 |
等加速度直線運動の公式を用いて、物体の座標、時間、速度に関する計算ができる。 | 3 | 前7 |
平面内を移動する質点の運動を位置ベクトルの変化として扱うことができる。 | 3 | 前7 |
物体の変位、速度、加速度を微分・積分を用いて相互に計算することができる。 | 3 | 前7 |
鉛直投射した物体の座標、速度、時間に関する計算ができる。 | 3 | 前7 |
自由落下、及び鉛直投射した物体の座標、速度、時間に関する計算ができる。 | 3 | 前7 |
水平投射、及び斜方投射した物体の座標、速度、時間に関する計算ができる。 | 3 | 前7 |
物体に作用する力を図示することができる。 | 3 | 前7 |
力の合成と分解をすることができる。 | 3 | 前7 |
重力、抗力、張力、圧力について説明できる。 | 3 | 前7 |
フックの法則を用いて、弾性力の大きさを求めることができる。 | 3 | 前7 |
慣性の法則について説明できる。 | 3 | 前7 |
作用と反作用の関係について、具体例を挙げて説明できる。 | 3 | 前7 |
運動方程式を用いた計算ができる。 | 3 | 前7 |
簡単な運動について微分方程式の形で運動方程式を立て、初期値問題として解くことができる。 | 3 | 前7 |
静止摩擦力がはたらいている場合の力のつりあいについて説明できる。 | 3 | 前13 |
最大摩擦力に関する計算ができる。 | 3 | 前13 |
動摩擦力に関する計算ができる。 | 3 | 前13 |
仕事と仕事率に関する計算ができる。 | 3 | 前7 |
物体の運動エネルギーに関する計算ができる。 | 3 | 前7 |
重力による位置エネルギーに関する計算ができる。 | 3 | 前7 |
弾性力による位置エネルギーに関する計算ができる。 | 3 | 前7 |
力学的エネルギー保存則を様々な物理量の計算に利用できる。 | 3 | 前7 |
物体の質量と速度から運動量を求めることができる。 | 3 | 前7 |
運動量の差が力積に等しいことを利用して、様々な物理量の計算ができる。 | 3 | 前7 |
運動量保存則を様々な物理量の計算に利用できる。 | 3 | 前7 |
周期、振動数など単振動を特徴づける諸量を求めることができる。 | 3 | 前7 |
単振動における変位、速度、加速度、力の関係を説明できる。 | 3 | 前7 |
等速円運動をする物体の速度、角速度、加速度、向心力に関する計算ができる。 | 3 | 前7 |
万有引力の法則から物体間にはたらく万有引力を求めることができる. | 3 | 前7 |
万有引力による位置エネルギーに関する計算ができる。 | 3 | 前7 |
力のモーメントを求めることができる。 | 3 | 前7 |
角運動量を求めることができる。 | 3 | 前7 |
角運動量保存則について具体的な例を挙げて説明できる。 | 3 | 前7 |
剛体における力のつり合いに関する計算ができる。 | 3 | 前7 |
重心に関する計算ができる。 | 3 | 前7 |
一様な棒などの簡単な形状に対する慣性モーメントを求めることができる。 | 3 | 前7 |
剛体の回転運動について、回転の運動方程式を立てて解くことができる。 | 3 | 前7 |
熱 | 原子や分子の熱運動と絶対温度との関連について説明できる。 | 3 | 後3 |
時間の推移とともに、熱の移動によって熱平衡状態に達することを説明できる。 | 3 | 後3 |
熱量の保存則を表す式を立て、熱容量や比熱を求めることができる。 | 3 | 後3 |
物体の熱容量と比熱を用いた計算ができる。 | 3 | 後3 |
動摩擦力がする仕事は、一般に熱となることを説明できる。 | 3 | 後3 |
ボイル・シャルルの法則や理想気体の状態方程式を用いて、気体の圧力、温度、体積に関する計算ができる。 | 3 | 後3 |
気体の内部エネルギーについて説明できる。 | 3 | 後3 |
熱力学第一法則と定積変化・定圧変化・等温変化・断熱変化について説明できる。 | 3 | 後3 |
エネルギーには多くの形態があり互いに変換できることを具体例を挙げて説明できる。 | 3 | 後3 |
不可逆変化について理解し、具体例を挙げることができる。 | 3 | 後3 |
熱機関の熱効率に関する計算ができる。 | 3 | 後3 |
波動 | 波の振幅、波長、周期、振動数、速さについて説明できる。 | 3 | 後3 |
横波と縦波の違いについて説明できる。 | 3 | 後3 |
波の重ね合わせの原理について説明できる。 | 3 | 後3 |
波の独立性について説明できる。 | 3 | 後3 |
2つの波が干渉するとき、互いに強めあう条件と弱めあう条件について計算できる。 | 3 | 後3 |
定常波の特徴(節、腹の振動のようすなど)を説明できる。 | 3 | 後3 |
ホイヘンスの原理について説明できる。 | 3 | 後3 |
波の反射の法則、屈折の法則、および回折について説明できる。 | 3 | 後3 |
弦の長さと弦を伝わる波の速さから、弦の固有振動数を求めることができる。 | 3 | 後3 |
気柱の長さと音速から、開管、閉管の固有振動数を求めることができる(開口端補正は考えない)。 | 3 | 後3 |
共振、共鳴現象について具体例を挙げることができる。 | 3 | 後3 |
一直線上の運動において、ドップラー効果による音の振動数変化を求めることができる。 | 3 | 後3 |
自然光と偏光の違いについて説明できる。 | 3 | 後3 |
光の反射角、屈折角に関する計算ができる。 | 3 | 後3 |
波長の違いによる分散現象によってスペクトルが生じることを説明できる。 | 3 | 後3 |
電気 | クーロンの法則を説明し、点電荷の間にはたらく静電気力を求めることができる。 | 3 | 後3 |
導体と不導体の違いについて、自由電子と関連させて説明できる。 | 3 | 後3 |
オームの法則から、電圧、電流、抵抗に関する計算ができる。 | 3 | 後3 |
抵抗を直列接続、及び並列接続したときの合成抵抗の値を求めることができる。 | 3 | 後3 |
ジュール熱や電力を求めることができる。 | 3 | 後3 |
物理実験 | 物理実験 | 測定機器などの取り扱い方を理解し、基本的な操作を行うことができる。 | 3 | 後3 |
安全を確保して、実験を行うことができる。 | 3 | 後3 |
実験報告書を決められた形式で作成できる。 | 3 | 後3 |
有効数字を考慮して、データを集計することができる。 | 3 | 後3 |
力学に関する分野に関する実験に基づき、代表的な物理現象を説明できる。 | 3 | 後3 |
熱に関する分野に関する実験に基づき、代表的な物理現象を説明できる。 | 3 | 後3 |
波に関する分野に関する実験に基づき、代表的な物理現象を説明できる。 | 3 | 後3 |
光に関する分野に関する実験に基づき、代表的な物理現象を説明できる。 | 3 | 後3 |
電磁気に関する分野に関する実験に基づき、代表的な物理現象を説明できる。 | 3 | 後3 |
電子・原子に関する分野に関する実験に基づき、代表的な物理現象を説明できる。 | 3 | 後3 |
工学基礎 | 工学実験技術(各種測定方法、データ処理、考察方法) | 工学実験技術(各種測定方法、データ処理、考察方法) | 物理、化学、情報、工学についての基礎的原理や現象を、実験を通じて理解できる。 | 3 | |
物理、化学、情報、工学における基礎的な原理や現象を明らかにするための実験手法、実験手順について説明できる。 | 3 | 後3 |
実験装置や測定器の操作、及び実験器具・試薬・材料の正しい取扱を身に付け、安全に実験できる。 | 3 | 後3 |
実験データの分析、誤差解析、有効桁数の評価、整理の仕方、考察の論理性に配慮して実践できる。 | 3 | 後3 |
実験テーマの目的に沿って実験・測定結果の妥当性など実験データについて論理的な考察ができる。 | 3 | 後3 |
実験ノートや実験レポートの記載方法に沿ってレポート作成を実践できる。 | 3 | 後3 |
分野横断的能力 | 態度・志向性(人間力) | 態度・志向性 | 態度・志向性 | 身内の中で、周囲の状況を改善すべく、自身の能力を発揮できる。
| 3 | 後15 |
集団の中で、自身の能力を発揮して、組織の勢いを向上できる。 | 3 | 後15 |
日常生活の時間管理、健康管理、金銭管理などができる。常に良い状態を維持するための努力を怠らない。 | 3 | 後15 |
ストレスやプレッシャーに対し、自分自身をよく知り、解決を試みる行動をとることができる。日常生活の管理ができるとともに、目標達成のために対処することができる。 | 3 | 後15 |
学生であっても社会全体を構成している一員としての意識を持って、行動することができる。 | 3 | 後15 |
市民として社会の一員であることを理解し、社会に大きなマイナス影響を及ぼす行為を戒める。人間性・教養、モラルなど、社会的・地球的観点から物事を考えることができる。 | 3 | 後15 |
チームワークの必要性・ルール・マナーを理解し、自分の感情の抑制、コントロールをし、他者の意見を尊重し、適切なコミュニケーションを持つとともに、当事者意識を持ち協調して共同作業・研究をすすめることができる。 | 3 | 後15 |
組織やチームの目標や役割を理解し、他者の意見を尊重しながら、適切なコミュニケーションを持つとともに、成果をあげるために役割を超えた行動をとるなど、柔軟性を持った行動をとることができる。 | 3 | 後15 |
先にたって行動の模範を示すことができる。口頭などで説明し、他者に対し適切な協調行動を促し、共同作業・研究をすすめことができる。 | 3 | 後15 |
目指すべき方向性を示し、先に立って行動の模範を示すことで他者に適切な協調行動を促し、共同作業・研究において、系統的に成果を生み出すことができる。リーダーシップを発揮するために、常に情報収集や相談を怠らず自身の判断力をも磨くことができる。 | 3 | 後15 |
法令を理解し遵守する。基本的人権について理解し、他者のおかれている状況を理解することができる。自分が関係している技術が社会や自然に及ぼす影響や効果を理解し、技術者が社会に負っている責任を認識している。 | 3 | 後15 |
法令を理解し遵守する。研究などで使用する、他者のおかれている状況を理解できる。自分が関係している技術が社会や自然に及ぼす影響や効果を理解し、技術者が社会に負っている責任を認識し、身近で起こる関連した情報や見解の収集に努めるなど、技術の成果が社会に受け入れられるよう行動できる。 | 3 | 後15 |
未来の多くの可能性から技術の発展と持続的社会の在り方を理解し、自らのキャリアを考えることができる。 | 3 | 後15 |
技術の発展と持続的社会の在り方に関する知識を有し、未来社会を考察することができるとともに、技術の創造や自らのキャリアをデザインすることが考慮できる。 | 3 | 後15 |
総合的な学習経験と創造的思考力 | 総合的な学習経験と創造的思考力 | 総合的な学習経験と創造的思考力 | 工学的な課題を論理的・合理的な方法で明確化できる。 | 3 | 後15 |
公衆の健康、安全、文化、社会、環境への影響などの多様な観点から課題解決のために配慮すべきことを認識している。 | 3 | 後15 |
クライアントの要求を解決するための設計解を作り出すプロセス理解し、設計解を創案できる。さらに、創案した設計解が要求を解決するものであるかを評価しなければならないことを理解する。 | 3 | 後15 |
クライアントの要求を解決するための設計解を作り出すプロセスを理解し、設計解を創案できる。さらに、創案した設計解が要求を解決するものであるかを評価しデザインすることができる。 | 3 | 後15 |