分類 | 分野 | 学習内容 | 学習内容の到達目標 | 到達レベル | 授業週 |
基礎的能力 | 数学 | 数学 | 数学 | 整式の加減乗除の計算や、式の展開ができる。 | 3 | |
因数定理等を利用して、4次までの簡単な整式の因数分解ができる。 | 3 | |
分数式の加減乗除の計算ができる。 | 3 | |
実数・絶対値の意味を理解し、絶対値の簡単な計算ができる。 | 3 | |
平方根の基本的な計算ができる(分母の有理化も含む)。 | 3 | |
1元連立1次不等式を解くことができる。 | 3 | |
基本的な2次不等式を解くことができる。 | 3 | |
解の公式等を利用して、2次方程式を解くことができる。 | 3 | |
因数定理等を利用して、基本的な高次方程式を解くことができる。 | 3 | |
簡単な連立方程式を解くことができる。 | 3 | |
無理方程式・分数方程式を解くことができる。 | 3 | |
1次不等式や2次不等式を解くことができる。 | 3 | |
恒等式と方程式の違いを区別できる。 | 3 | |
無理関数の性質を理解し、グラフをかくことができる。 | 3 | |
関数のグラフと座標軸との共有点を求めることができる。 | 3 | |
2次関数の性質を理解し、グラフをかくことができ、最大値・最小値を求めることができる。 | 3 | |
分数関数や無理関数の性質を理解し、グラフをかくことができる。 | 3 | |
簡単な場合について、関数の逆関数を求め、そのグラフをかくことができる。 | 3 | |
累乗根の意味を理解し、指数法則を拡張し、計算に利用することができる。 | 3 | |
指数関数の性質を理解し、グラフをかくことができる。 | 3 | |
指数関数を含む簡単な方程式を解くことができる。 | 3 | |
対数の意味を理解し、対数を利用した計算ができる。 | 3 | |
対数関数の性質を理解し、グラフをかくことができる。 | 3 | |
対数関数を含む簡単な方程式を解くことができる。 | 3 | |
三角比を理解し、三角関数表を用いて三角比を求めることができる。一般角の三角関数の値を求めることができる。 | 3 | |
角を弧度法で表現することができる。 | 3 | |
三角関数の性質を理解し、グラフをかくことができる。 | 3 | |
加法定理および加法定理から導出される公式等を使うことができる。 | 3 | |
三角関数を含む簡単な方程式を解くことができる。 | 3 | |
通る点や傾きから直線の方程式を求めることができる。 | 3 | |
2点間の距離を求めることができる。 | 3 | |
内分点の座標を求めることができる。 | 3 | |
2つの直線の平行・垂直条件を利用して、直線の方程式を求めることができる。 | 3 | |
簡単な場合について、円の方程式を求めることができる。 | 3 | |
積の法則と和の法則を利用して、簡単な事象の場合の数を数えることができる。 | 3 | |
簡単な場合について、順列と組合せの計算ができる。 | 3 | |
等差数列・等比数列の一般項やその和を求めることができる。 | 3 | |
不定形を含むいろいろな数列の極限を求めることができる。 | 3 | |
ベクトルの定義を理解し、ベクトルの基本的な計算(和・差・定数倍)ができ、大きさを求めることができる。 | 3 | |
平面および空間ベクトルの成分表示ができ、成分表示を利用して簡単な計算ができる。 | 3 | |
問題を解くために、ベクトルの平行・垂直条件を利用することができる。 | 3 | |
行列の和・差・数との積の計算ができる。 | 3 | |
行列の積の計算ができる。 | 3 | |
行列の定義を理解し、行列の和・差・スカラーとの積、行列の積を求めることができる。 | 3 | |
行列式の定義および性質を理解し、基本的な行列式の値を求めることができる。 | 3 | |
合成変換や逆変換を表す行列を求めることができる。 | 3 | |
簡単な場合について、関数の極限を求めることができる。 | 3 | |
微分係数の意味や、導関数の定義を理解し、導関数を求めることができる。 | 3 | |
関数の増減表を書いて、極値を求め、グラフの概形をかくことができる。 | 3 | |
極値を利用して、関数の最大値・最小値を求めることができる。 | 3 | |
簡単な場合について、立体の体積を定積分で求めることができる。 | 3 | |
自然科学 | 物理 | 力学 | 速度と加速度の概念を説明できる。 | 3 | |
直線および平面運動において、2物体の相対速度、合成速度を求めることができる。 | 3 | |
等加速度直線運動の公式を用いて、物体の座標、時間、速度に関する計算ができる。 | 3 | |
平面内を移動する質点の運動を位置ベクトルの変化として扱うことができる。 | 3 | |
物体の変位、速度、加速度を微分・積分を用いて相互に計算することができる。 | 3 | |
鉛直投射した物体の座標、速度、時間に関する計算ができる。 | 3 | |
自由落下、及び鉛直投射した物体の座標、速度、時間に関する計算ができる。 | 3 | |
水平投射、及び斜方投射した物体の座標、速度、時間に関する計算ができる。 | 3 | |
物体に作用する力を図示することができる。 | 3 | |
力の合成と分解をすることができる。 | 3 | |
重力、抗力、張力、圧力について説明できる。 | 3 | |
物体の質量と速度から運動量を求めることができる。 | 3 | |
周期、振動数など単振動を特徴づける諸量を求めることができる。 | 3 | |
万有引力の法則から物体間にはたらく万有引力を求めることができる. | 3 | |
万有引力による位置エネルギーに関する計算ができる。 | 3 | |
力のモーメントを求めることができる。 | 3 | |
角運動量を求めることができる。 | 3 | |
剛体における力のつり合いに関する計算ができる。 | 3 | |
重心に関する計算ができる。 | 3 | |
熱 | 原子や分子の熱運動と絶対温度との関連について説明できる。 | 3 | |
熱量の保存則を表す式を立て、熱容量や比熱を求めることができる。 | 3 | |
物体の熱容量と比熱を用いた計算ができる。 | 3 | |
動摩擦力がする仕事は、一般に熱となることを説明できる。 | 3 | |
ボイル・シャルルの法則や理想気体の状態方程式を用いて、気体の圧力、温度、体積に関する計算ができる。 | 3 | |
気体の内部エネルギーについて説明できる。 | 3 | |
熱力学第一法則と定積変化・定圧変化・等温変化・断熱変化について説明できる。 | 3 | |
エネルギーには多くの形態があり互いに変換できることを具体例を挙げて説明できる。 | 3 | |
熱機関の熱効率に関する計算ができる。 | 3 | |
波動 | 横波と縦波の違いについて説明できる。 | 3 | |
波の重ね合わせの原理について説明できる。 | 3 | |
共振、共鳴現象について具体例を挙げることができる。 | 3 | |
工学基礎 | 工学実験技術(各種測定方法、データ処理、考察方法) | 工学実験技術(各種測定方法、データ処理、考察方法) | 物理、化学、情報、工学についての基礎的原理や現象を、実験を通じて理解できる。 | 3 | |
物理、化学、情報、工学における基礎的な原理や現象を明らかにするための実験手法、実験手順について説明できる。 | 3 | |
実験ノートや実験レポートの記載方法に沿ってレポート作成を実践できる。 | 3 | |