数学ⅡB

科目基礎情報

学校 徳山工業高等専門学校 開講年度 令和04年度 (2022年度)
授業科目 数学ⅡB
科目番号 0038 科目区分 一般 / 必修
授業形態 講義 単位の種別と単位数 履修単位: 3
開設学科 土木建築工学科 対象学年 2
開設期 通年 週時間数 前期:2 後期:4
教科書/教材 教科書:新井 一道他「新基礎数学」(大日本図書)    井川 治他「新線形代数」(大日本図書)問題集:新井 一道他「新基礎数学 問題集」(大日本図書)    金子 真隆他「新線形代数 問題集」(大日本図書)
担当教員 山本 拓生,唐松 良生

到達目標

加法定理を自在に利用できる。2次曲線の図形が描け、その接線の方程式を求めることができる。順列や組み合わせの考え方と計算ができる。基本的な数列の一般項、初項から一般項までの和を求めることができる。ベクトル計算が座標を使って代数的にできる。教科書の問いと練習問題の70%が自力で解けるようになる。

ルーブリック

理想的な到達レベルの目安標準的な到達レベルの目安未到達レベルの目安
評価項目1各単元において数学的な性質を理解し,応用問題を解くことができる. 各単元における基本的な計算方法を理解し,標準問題を解くことができる. 各単元における基本問題を解くことができない.

学科の到達目標項目との関係

到達目標 A 1 説明 閉じる

教育方法等

概要:
基礎数学(1年次)を引き継ぎ、三角関数の加法定理を学び、次に2次曲線の方程式や不等式と領域について学ぶ。引き続いて場合の数・順列・組合せ・数列などについて学ぶ。線形代数では、平面や空間のベクトルの定義・性質・演算・図形への応用などについて学ぶ。
授業の進め方・方法:
教科書に沿って講義形式で進めるが、「演習」、レポートを次のように行う。「演習」:各節を終える毎に演習を行う。「レポート」:問題集(教科傍用)の問題を解答して提出する。
また、定期テストの他、「小テスト」をおこなう場合がある。
注意点:
数学は、毎時間の内容をきちんと理解しながら進むことが必要で、もし途中で分からなくなったら復習するなり質問するなりして、疑問点は解消しておくこと。以下に示す授業計画は1週分(前期2時間、後期4時間)を1回分としてある。
定期試験・小テストの平均点が8割、レポート点を2割として評価する。

授業の属性・履修上の区分

アクティブラーニング
ICT 利用
遠隔授業対応
実務経験のある教員による授業

授業計画

授業内容 週ごとの到達目標
前期
1stQ
1週 三角関数の加法定理とその応用
三角関数の加法定理とは何かを学び、加法定理を用いていろいろな角の三角比を求める。
2週 加法定理の応用
加法定理を使って2倍角の公式、半角の公式を導く。
3週 三角関数の合成
三角関数の合成について学ぶ。
4週 演習
ここまで学んだ内容についての演習を行う。
5週 円の方程式、演習 円の方程式を求め、そのグラフをかく.
6週 楕円の方程式 楕円の方程式を求め、そのグラフをかく。
7週 演習 ここまで学んだ内容についての演習を行う。
8週 中間試験 これまでに学習した内容について試験をする。
2ndQ
9週 双曲線の方程式 双曲線の方程式を求め、そのグラフをかく。
10週 放物線の方程式、二次曲線の接線 放物線や二次曲線の接線の方程式を求め、そのグラフをかく。
11週 不等式と領域 不等式や連立不等式の表す領域を図示する。
12週 演習 ここまで学んだ内容についての演習を行う。
13週 場合の数 場合の数について学ぶ
14週 順列・重複順列 順列、重複順列の考え方と計算法を学ぶ。
15週 期末試験 前期中間試験以後に学習した内容について試験をする。
16週 答案返却 答案の返却と解答の説明を行う。
後期
3rdQ
1週 組合せ いろいろな順列 組み合わせの考え方と計算法を学ぶ。
同じものを含む順列、円順列について学ぶ。
2週 二項定理、演習 二項定理について学ぶ。
ここまで学んだ内容についての演習を行う。
3週 数列、等差数列、等比数列 数列についての基本的知識を学ぶ。
等差数列・等比数列の一般項、和について学ぶ。
4週 いろいろな数列の和、漸化式と数学的帰納法 シグマ記号を用いていろいろな数列の和を求める。
漸化式の概念を理解し、漸化式を解く。数学的帰納法とその使い方を学ぶ。
5週 演習 ここまで学んだ内容についての演習を行う。
6週 ベクトル、ベクトルの演算 ベクトルの定義を理解し、基本的な計算(和、差、定数倍)を学び、ベクトルの大きさを求める。
7週 ベクトルの成分・ベクトルの内積 ベクトルの成分表示と成分による基本的な計算を学ぶ。
ベクトルの内積について学ぶ。
8週 中間試験 前期末試験以後に学習した内容について試験をする。
4thQ
9週 ベクトルの平行条件と垂直条件、ベクトルの図形への応用  ベクトルの平行条件、垂直条件を学ぶ。
ベクトルの平行条件、垂直条件を利用して、いろいろな問題を解く。
10週 直線のベクトル方程式、平面ベクトルの線形独立・線形従属
平面上の直線のベクトル方程式を求める。
2個のベクトルの線形結合、線形独立、線形従属について学ぶ。。
11週 演習、空間座標・2点間の距離 ここまで学んだ内容についての演習を行う。
空間内のベクトルの成分表示と成分による基本的な計算を学ぶ。
12週 ベクトルの内積、直線の方程式
空間内のベクトルの内積の定義とその性質、およびその応用について学ぶ。空間内の2直線のなす角を求める。
13週 平面の方程式、球の方程式 平面の方程式、球の方程式を求める。
14週 空間ベクトルの線形独立・線形従属、演習 3個のベクトルの線形結合、線形独立、線形従属について学ぶ。
ここまで学んだ内容についての演習を行う。
15週 期末試験 後期中間試験以後に学習した内容について試験をする。
16週 答案返却など 答案の返却と解答の説明を行う。

モデルコアカリキュラムの学習内容と到達目標

分類分野学習内容学習内容の到達目標到達レベル授業週
基礎的能力数学数学数学加法定理および加法定理から導出される公式等を使うことができる。3前1,前2,前3,前4
簡単な場合について、円の方程式を求めることができる。3前5
放物線、楕円、双曲線の図形的な性質の違いを区別できる。3前6,前7,前9,前10
簡単な場合について、不等式の表す領域を求めたり領域を不等式で表すことができる。3前11,前12
積の法則と和の法則を利用して、簡単な事象の場合の数を数えることができる。3前13
簡単な場合について、順列と組合せの計算ができる。3前14,後1,後2
等差数列・等比数列の一般項やその和を求めることができる。3後3
総和記号を用いた簡単な数列の和を求めることができる。3後4,後5
不定形を含むいろいろな数列の極限を求めることができる。3
無限等比級数等の簡単な級数の収束・発散を調べ、その和を求めることができる。3
ベクトルの定義を理解し、ベクトルの基本的な計算(和・差・定数倍)ができ、大きさを求めることができる。3後6
平面および空間ベクトルの成分表示ができ、成分表示を利用して簡単な計算ができる。3後6
平面および空間ベクトルの内積を求めることができる。3後7
問題を解くために、ベクトルの平行・垂直条件を利用することができる。3後9
空間内の直線・平面・球の方程式を求めることができる(必要に応じてベクトル方程式も扱う)。3後10,後11,後12,後13

評価割合

試験・小テスト発表相互評価態度ポートフォリオレポート合計
総合評価割合80000020100
基礎的能力80000020100
専門的能力0000000
分野横断的能力0000000