応用数学

科目基礎情報

学校 大島商船高等専門学校 開講年度 令和04年度 (2022年度)
授業科目 応用数学
科目番号 0243 科目区分 専門 / 必修
授業形態 授業 単位の種別と単位数 履修単位: 2
開設学科 商船学科 対象学年 5
開設期 通年 週時間数 2
教科書/教材 新版微分積分Ⅱ(実教出版)
担当教員 テーラ 穣二

到達目標

(1)関数の近似に関する標準的な問題を解くことができる。
(2)2変数関数の微分に関する標準的な問題を解くことができる。
(3)2変数関数の積分に関する標準的な問題を解くことができる。
(4)基礎的な微分方程式を解くことができる。
(5)確率に関する標準的な問題を解くことができる。

ルーブリック

理想的な到達レベルの目安標準的な到達レベルの目安未到達レベルの目安
評価項目1関数の近似に関する発展的な問題を解くことができる。関数の近似に関する標準的な問題を解くことができる。関数の近似に関する標準的な問題を解くことができない。
評価項目22変数関数の微分に関する発展的な問題を解くことができる。2変数関数の微分に関する標準的な問題を解くことができる。2変数関数の微分に関する標準的な問題を解くことができない。
評価項目32変数関数の積分に関する発展的な問題を解くことができる。2変数関数の積分に関する標準的な問題を解くことができる。2変数関数の積分に関する標準的な問題を解くことができない。
評価項目4応用的な微分方程式が解くことができる。基礎的な微分方程式が解くことができる。基礎的な微分方程式を解くことができない。
評価項目5確率に関する発展的な問題を解くことができる。確率に関する標準的な問題を解くことができる。 確率に関する標準的な問題を解くことができない。

学科の到達目標項目との関係

本校 (1)-a 説明 閉じる
商船 (2)-c 説明 閉じる

教育方法等

概要:
微分積分は、工学、自然科学を含む現代科学の必須の基礎概念である。これまで学習した1変数関数の微分・積分を発展させて学ぶ。さらに2変数以上の関数の微分・積分の概念と計算能力を養成する。そして、微分・積分・確率を使って様々な問題を解決できるようになることを目指す。
授業の進め方・方法:
2つ以上の変数に依存した関数の微分・積分に関する問題を扱い,工業技術に関係することがらを数学的な考え方で見直せる能力を養う。授業については, 講義と演習を2:1の割合で行う。演習課題については, 学生同士で議論をして協力しながら取り組むこと。
注意点:
これまでに学習した数学(微分・積分等)については必要に応じて各自で復習すること。
演習課題の答案は板書またはレポートとして提出するものとします。

授業の属性・履修上の区分

アクティブラーニング
ICT 利用
遠隔授業対応
実務経験のある教員による授業

授業計画

授業内容 週ごとの到達目標
前期
1stQ
1週 ガイダンス
微分法の復習
2変数関数
2変数関数の定義域と値域、グラフについて理解できる。
2週 関数の極限 2変数関数の極限を求めることができる。
3週 偏微分係数 偏微分係数を求めることができる。
4週 偏導関数(1) 偏導関数の定義を理解している。
5週 偏導関数(2) 関数の偏導関数を求めることが出来る。
6週 高次偏導関数 関数について, 2,3次および高次までの偏導関数を計算できる。
7週 合成関数の微分法 合成関数の偏微分法を利用した計算ができる。
8週 中間試験
2ndQ
9週 全微分 全微分を理解している。
10週 接平面 接平面の方程式を求めることができる。
11週 極大・極小 偏導関数を用いて, 2変数関数の極値を求めることができる。
12週 関数の近似 近似を用いて計算することができる。
13週 テイラー展開 テイラー展開を用いて関数を表現できる。
14週 確率・統計(1) いろいろな確率を求めることができる
15週 確率・統計(2) 平均・分散・標準偏差・相関係数・回帰曲線を求めることができる
16週 期末試験
後期
3rdQ
1週 微分方程式の一般解,特殊解
微分方程式の初期値問題と境界値問題
微分方程式の一般解,特殊解を理解し,微分方程式の初期値問題と境界値問題が解ける。
2週 1階微分方程式(変数分離形,同次形) 1階微分方程式(変数分離形,同次形)が解ける。
3週 線形微分方程式の解 線形微分方程式の解を説明できる。
4週 同次線形微分方程式(1) 同次線形微分方程式の基本解の個数について理解できる。
5週 同次線形微分方程式(2) 同次線形微分方程式の一般解を求めることができる。
6週 2重積分の定義 2重積分の定義を理解できる
7週 2重積分の計算(1) 2重積分を累次積分になおして計算することができる。
8週 後期中間試験 後期1~7週の設問に解答できる
4thQ
9週 2重積分の計算(2) 積分領域が関数で囲まれているの場合の積分計算ができる。
10週 積分順序交換 積分順序を交換して積分を計算することができる。
11週 2重積分と座標変換 極座標に変換することによって2重積分を計算することができる。
12週 変数変換 変数変換, ヤコビ行列式を理解できる。
13週 体積(1) 平面を表す関数を用いて体積を求めることができる。
14週 体積(2) 曲面を表す関数を用いて体積を求めることができる。
15週 ガウス型積分 ガウス型の積分を理解している。
16週 学年末試験

モデルコアカリキュラムの学習内容と到達目標

分類分野学習内容学習内容の到達目標到達レベル授業週
基礎的能力数学数学数学微分係数の意味や、導関数の定義を理解し、導関数を求めることができる。3前1,前3,前4,前5
積・商の導関数の公式を用いて、導関数を求めることがができる。3前1,前4,前5
合成関数の導関数を求めることができる。3前1,前4,前5
三角関数・指数関数・対数関数の導関数を求めることができる。3前1,前4,前5
不定積分の定義を理解し、簡単な不定積分を求めることができる。3前5,後1
置換積分および部分積分を用いて、不定積分や定積分を求めることができる。3後6
定積分の定義と微積分の基本定理を理解し、簡単な定積分を求めることができる。3後6
分数関数・無理関数・三角関数・指数関数・対数関数の不定積分・定積分を求めることができる。3後6
2変数関数の定義域を理解し、不等式やグラフで表すことができる。3前1,前3,前4
合成関数の偏微分法を利用して、偏導関数を求めることができる。3前7
簡単な関数について、2次までの偏導関数を求めることができる。3前6
偏導関数を用いて、基本的な2変数関数の極値を求めることができる。3前9,前10,前11
2重積分の定義を理解し、簡単な2重積分を累次積分に直して求めることができる。3後6,後7,後9
極座標に変換することによって2重積分を求めることができる。3後10,後11,後12
2重積分を用いて、簡単な立体の体積を求めることができる。3後13,後14
微分方程式の意味を理解し、簡単な変数分離形の微分方程式を解くことができる。3後1,後2
簡単な1階線形微分方程式を解くことができる。3後3,後12
定数係数2階斉次線形微分方程式を解くことができる。3後4,後5,後13,後14,後15
独立試行の確率、余事象の確率、確率の加法定理、排反事象の確率を理解し、簡単な場合について、確率を求めることができる。3前14
条件付き確率、確率の乗法定理、独立事象の確率を理解し、簡単な場合について確率を求めることができる。3前14
簡単な1変数関数の局所的な1次近似式を求めることができる。3前2,前12
1変数関数のテイラー展開を理解し、基本的な関数のマクローリン展開を求めることができる。3前1,前3,前13
オイラーの公式を用いて、複素数変数の指数関数の簡単な計算ができる。3前4,前13

評価割合

試験課題態度合計
総合評価割合70300100
基礎的能力0000
専門的能力70300100
分野横断的能力0000