微分積分Ⅱ

科目基礎情報

学校 香川高等専門学校 開講年度 令和02年度 (2020年度)
授業科目 微分積分Ⅱ
科目番号 200003 科目区分 一般 / 必修
授業形態 授業 単位の種別と単位数 履修単位: 3
開設学科 電気情報工学科(2018年度以前入学者) 対象学年 3
開設期 前期 週時間数 6
教科書/教材 東京書籍「新編数学Ⅲ」「アシストセレクト新編数学Ⅲ」「ニューアクションβ数学Ⅲ」
担当教員 白石 希典

目的・到達目標

1. 微分法を応用し, 基本的な関数の極値, 最大・最小値等に関する問題を解くことができる。
2. 積分法を応用し, 基本的な図形の面積, 体積, 長さ等に関する問題を解くことができる。

ルーブリック

理想的な到達レベルの目安標準的な到達レベルの目安未到達レベルの目安
評価項目1微分法を応用し, 基本的な関数の極値, 最大・最小値等に関する問題を解くことができる。微分法を応用し, 基本的な関数の極値, 最大・最小値等に関する簡単な問題を解くことができる。微分法を応用し, 基本的な関数の極値, 最大・最小値等に関する問題を解くことができない。
評価項目2積分法を応用し, 基本的な図形の面積, 体積, 長さ等に関する問題を解くことができる。積分法を応用し, 基本的な図形の面積, 体積, 長さ等に関する簡単な問題を解くことができる。積分法を応用し, 基本的な図形の面積, 体積, 長さ等に関する問題を解くことができない。

学科の到達目標項目との関係

教育方法等

概要:
この教科では,微分積分学Ⅰに引き続き,微分積分のより進んだ内容と応用(関数の増減, 面積, 体積など)を学習する。
授業の進め方と授業内容・方法:
教科書に沿って基本事項と例題を解説した後, 各自練習問題を解くという形式で講義する。適宜, レポートを課す。
注意点:
数学は積み重ねの科目なので, 授業で理解できなかったことは放置せずしっかり復習をして理解すること。

授業計画

授業内容・方法 週ごとの到達目標
前期
1stQ
1週 ガイダンス, 逆三角関数とその微分 逆三角関数やその導関数に関する計算ができる。
2週 接線, 平均値の定理, いろいろな関数の接線が計算できる。平均値の定理に関する問題が解ける。
3週 関数の極大・極小 いろいろな関数の極大値・極小値が求められる。
4週 ロピタルの定理, 曲線の凸凹 ロピタルの定理を用いてさまざまな関数の極限値が求められる。いろいろな曲線の凹凸が求められる。
5週 関数の最大・最小, 微分と不等式 いろいろな関数の最大値・最小値が求められる。微分に関する不等式の計算ができる。
6週 媒介変数で表された関数の微分, 速度と加速度 媒介変数で表されたさまざまな関数の微分ができる。運動の軌跡から速度と加速度が求められる。
7週 近似式, 不定積分 さまざまな関数の近似式が求められる。簡単な関数の不定積分ができる。
8週 前期中間試験 今までの内容を総合的に使うことができる。
2ndQ
9週 試験問題の解答, 不定積分の置換積分法 置換積分法を用いてさまざまな関数の不定積分ができる。
10週 不定積分の部分積分法, 定積分 部分積分法を用いてさまざまな関数の不定積分ができる。簡単な関数の定積分ができる。
11週 定積分の置換積分法・部分積分法 置換積分法・部分積分法を用いてさまざまな関数の定積分ができる。
12週 広義積分 簡単な広義積分の計算ができる。
13週 面積, 体積 さまざまな図形の面積や体積が計算できる。
14週 曲線の長さ, 速度と道のり, 区分求積法 さまざまな曲線の長さが計算できる。運動の軌跡から速度と道のりが求められる。区分求積法に関する問題が解ける。
15週 定積分と不等式, 総合演習 定積分に関する不等式の計算ができる。1年時からこれまでの学習内容を用いてさまざまな問題が解ける。
16週 前期末試験 今までの内容を総合的に使うことができる。

モデルコアカリキュラムの学習内容と到達目標

分類分野学習内容学習内容の到達目標到達レベル授業週
基礎的能力数学数学数学積・商の導関数の公式を用いて、導関数を求めることがができる。3
合成関数の導関数を求めることができる。3
三角関数・指数関数・対数関数の導関数を求めることができる。3
逆三角関数を理解し、逆三角関数の導関数を求めることができる。3
関数の増減表を書いて、極値を求め、グラフの概形をかくことができる。3
極値を利用して、関数の最大値・最小値を求めることができる。3
簡単な場合について、関数の接線の方程式を求めることができる。3
2次の導関数を利用して、グラフの凹凸を調べることができる。3
関数の媒介変数表示を理解し、媒介変数を利用して、その導関数を求めることができる。3
不定積分の定義を理解し、簡単な不定積分を求めることができる。3
置換積分および部分積分を用いて、不定積分や定積分を求めることができる。3
定積分の定義と微積分の基本定理を理解し、簡単な定積分を求めることができる。3
分数関数・無理関数・三角関数・指数関数・対数関数の不定積分・定積分を求めることができる。3
簡単な場合について、曲線で囲まれた図形の面積を定積分で求めることができる。3
簡単な場合について、曲線の長さを定積分で求めることができる。3
簡単な場合について、立体の体積を定積分で求めることができる。3
簡単な1変数関数の局所的な1次近似式を求めることができる。3

評価割合

定期試験クイズプリント課題ワークブックなどの提出物合計
総合評価割合40401010100
評価項目116164440
評価項目224246660