数学ⅢA

科目基礎情報

学校 香川高等専門学校 開講年度 令和07年度 (2025年度)
授業科目 数学ⅢA
科目番号 1130 科目区分 一般 / 必修
授業形態 授業 単位の種別と単位数 履修単位: 2
開設学科 通信ネットワーク工学科(2019年度以降入学者) 対象学年 3
開設期 通年 週時間数 前期:2 後期:2
教科書/教材 New Calculus Revised Ed., (Dainippon tosho), New Calculus Workbook Revised Ed., (Dainippon tosho)
担当教員 南 貴之,髙木 蓮

到達目標

Can calculate partial derivatives, multiple integrals, and first-order differential equations.

ルーブリック

Ideal LevelStandard LevelUnacceptable Level
Evaluation Item (1) Applications of CalculusCan perform applied calculations of differentiation and integration.Can perform simple applied calculations of differentiation and integration.Cannot perform applied calculations of differentiation and integration.
Evaluation Item (2) Partial differentiation and multiple integrationCan calculate partial derivatives and multiple integrals.Can calculate simple partial derivatives and multiple integrals.Cannot calculate partial derivatives and multiple integrals.
Evaluation Item (3) differential equationCan solve first-order differential equations.Can solve simple first-order differential equations.Cannot solve first-order differential equations.

学科の到達目標項目との関係

教育方法等

概要:
Learns more advanced contents and applications of calculus (partial differentiation and multiple integration).
授業の進め方・方法:
This class gives lectures explaining study contents according to the designated textbook. The students' self study is assumed to be necessary, and the class intends to allow them to consolidate their study contents through exercises. In the first semester, the students will study the continuation of "Mathematics II A" learned in the second year. In the second semester, partial differentiation and double integration will be covered. The class emphasizes the students' ability to perform various calculations based on an understanding of basic concepts.
注意点:
Office hours: Tuesday

授業の属性・履修上の区分

アクティブラーニング
ICT 利用
遠隔授業対応
実務経験のある教員による授業

授業計画

授業内容 週ごとの到達目標
前期
1stQ
1週 Guidance, Maclaurin expansion, Taylor expansion Can calculate the Maclaurin and Taylor expansions of basic functions. D1:3
2週 Euler's formula, Approximation by polynomials Can convert complex numbers between orthogonal and polar forms using Euler's formula. Understands the basic properties of approximate expressions and calculate approximate expressions of simple functions. D1:3
3週 First-order separable differential equations Can solve first-order separable differential equations. D1:3
4週 First-order homogeneous differential equations Can solve first-order homogeneous differential equations. D1:3
5週 First-order linear differential equations Can solve first-order linear differential equations. D1:3
6週 Second-order linear differential equations with constant coefficients (homogeneous) Can solve second-order homogeneous linear differential equations with constant coefficients. D1:3
7週 Second-order linear differential equations with constant coefficients (inhomogeneous) Can solve second-order inhomogeneous linear differential equations with constant coefficients. D1:3
8週 First semester midterm exam
2ndQ
9週 Exam solutions, Functions of 2 variables Understands the definition of functions of 2 variables. D1:3
10週 Functions of 2 variables and their limits Can calculate the limits of functions of 2 variables. D1:3
11週 Continuity, Partial derivatives Can determine the continuity of two-variable functions.
Can calculate partial derivatives. D1:3
12週 Tangent planes and Total differentiation Can calculate tangent planes of curved surfaces.
Can calculate the total derivatives of functions. D1:3
13週 Partial differentiation of composite functions (1) Can calculate the partial derivatives of composite functions of two-variable functions. D1:3
14週 Partial differentiation of composite functions (1) Can calculate the partial derivatives of composite functions of two-variable functions. D1:3
15週 Exercises Can combinedly use the contents learned up to this point. D1:3
16週 First semester final exam
後期
3rdQ
1週 Exam solutions, Higher-order partial derivatives Can calculate higher order partial derivatives of two-variable functions.
D1:3
2週 Higher-order partial derivatives Can calculate higher order partial derivatives of two-variable functions.
D1:3
3週 Higher-order partial derivatives Can calculate higher order partial derivatives of two-variable functions.
D1:3
4週 Tayler's theorem Understands Taylor's theorem for two-variable functions. D1:3
5週 Tayler's theorem Understands Taylor's theorem for two-variable functions. D1:3
6週 Extrema Can calculate the extrema of two-variable functions. D1:3
7週 Extrema Can calculate the extrema of two-variable functions. D1:3
8週 Second semester midterm exam Can combinedly use the contents learned up to this point. D1:3
4thQ
9週 Exam solutions, Definition of multiple integration Understands the definition of multiple integration over rectangular regions and general regions. D1:3
10週 Definition of multiple integration Understands the definition of multiple integration over rectangular regions and general regions. D1:3
11週 Calculation of multiple integrals Can calculate multiple integrals in general regions. D1:3
12週 Calculation of multiple integrals Can calculate multiple integrals in general regions. D1:3
13週 Change of variables in multiple integrals Can calculate multiple integrals by using the change of variables. D1:3
14週 Improper integrals Can calculate improper multiple integrals. D1:3
15週 Second semester final exam Can combinedly use the contents learned up to this point. D1:3
16週 Exam solutions

モデルコアカリキュラムの学習内容と到達目標

分類分野学習内容学習内容の到達目標到達レベル授業週
基礎的能力数学数学数学簡単な1変数関数の局所的な1次近似式を求めることができる。3
1変数関数のテイラー展開を理解し、基本的な関数のマクローリン展開を求めることができる。3
オイラーの公式を用いて、複素数変数の指数関数の簡単な計算ができる。3
2変数関数の定義域を理解し、不等式やグラフで表すことができる。3
合成関数の偏微分法を利用して、偏導関数を求めることができる。3
簡単な関数について、2次までの偏導関数を求めることができる。3
偏導関数を用いて、基本的な2変数関数の極値を求めることができる。3
2重積分の定義を理解し、簡単な2重積分を累次積分に直して求めることができる。3
極座標に変換することによって2重積分を求めることができる。3
2重積分を用いて、簡単な立体の体積を求めることができる。3
微分方程式の意味を理解し、簡単な変数分離形の微分方程式を解くことができる。3
簡単な1階線形微分方程式を解くことができる。3
定数係数2階斉次線形微分方程式を解くことができる。3

評価割合

examinationPresentationMutual Evaluations between studentsBehaviorPortfolioOther合計
総合評価割合90000100100
Basic Proficiency90000100100
Specialized Proficiency0000000
Cross Area Proficiency0000000