数学1

科目基礎情報

学校 弓削商船高等専門学校 開講年度 令和03年度 (2021年度)
授業科目 数学1
科目番号 0012 科目区分 一般 / 必修
授業形態 授業 単位の種別と単位数 履修単位: 4
開設学科 情報工学科 対象学年 1
開設期 通年 週時間数 4
教科書/教材 基礎の数学:矢野健太郎ほか(裳華房),問題集 基礎の数学:矢野健太郎ほか(裳華房)
担当教員 柴田 孝祐

目的・到達目標

数と式,関数,方程式についての基礎的な知識と計算技能の習得を目標とする.

ルーブリック

理想的な到達レベルの目安標準的な到達レベルの目安未到達レベルの目安
整式や数についての計算法則や公式を自在に取り扱うことができる.法則や公式を適切に活用し,計算,因数分解ができる.法則や公式を用い,計算,因数分解ができる.法則や公式を用い,計算,因数分解ができない.
各関数の特徴を理解し,グラフの作成,最大最小,方程式,不等式へ活用することができる.方程式,不等式を,グラフを活用して解ける.グラフをかき,方程式との関係を説明できる.グラフをかくことができない.
高次方程式を解くことができる.適切な定理や公式を利用し方程式を解ける.解の公式や因数分解を活用し方程式を解ける.方程式を解くことができない.

学科の到達目標項目との関係

教養 D1 説明 閉じる

教育方法等

概要:
試験,レポート,その他(黒板での発表,演習時の実施状況,授業態度など)により,評価する.
授業の進め方と授業内容・方法:
注意点:
講義を受けるだけでは,理解することは困難です.必ず問題演習を行い,学んだ事を自分の手で再現し理解を深めて下さい.復習は必須です.
関連科目:数学1,数学2,数学特論,応用数学1,応用数学2,物理等

実務経験のある教員による授業科目

授業の属性・履修上の区分

アクティブラーニング
ICT 利用
遠隔授業対応
実務経験のある教員による授業

授業計画

授業内容・方法 週ごとの到達目標
前期
1stQ
1週 ガイダンス,整式の加法,減法,乗法(pp.1-3) 整式の加法,減法,乗法ができる.
2週 整式の加法,減法,乗法(pp.4-7) 整式の加法,減法,乗法ができる.
3週 因数分解(pp.8-10) 公式を利用して,因数分解ができる.
4週 整式の除法(pp.11-12) 整式の除法ができる.
5週 因数定理と因数分解(pp.13-14) 因数定理を利用して,4次までの因数分解ができる.
6週 実数(pp.16-19) 絶対値の簡単な計算ができる.
7週 平方根の計算(pp.20-22) 平方根の基本的な計算と分母の有理化ができる.
8週 中間試験
2ndQ
9週 分数式(pp.23-26) 分数式の計算ができる.
10週 2次方程式(解の公式)(pp.31-34) 解の公式を利用して2次方程式を解くことができる.
11週 複素数と2次方程式(pp.35-38) 複素数の相等を理解し,2次方程式を複素数の範囲で解くことができる.
12週 解と係数の関係,連立方程式(pp.39-42) 簡単な連立方程式を解くことができる.
13週 色々な方程式(演習書:pp.16-17) 無理方程式・分数方程式を解くことができる.
14週 不等式(pp.43-46) 1次不等式や2次不等式を解くことができる.
15週 特別な不等式(pp.47-49) 特別な不等式を解くことができる.
16週 期末試験
後期
3rdQ
1週 恒等式(pp.50-51) 恒等式と方程式の違いを区別できる.
2週 高次方程式,高次不等式(pp.53-54) 因数定理を利用して高次方程式を解くことができる.
3週 関数の記号・用語,1次関数のグラフ(pp.66-70) 1次関数のグラフをかくことができる.
4週 点・グラフの移動(pp.71-75) 平行移動・対称移動・回転移動などが区別できる.
5週 1次関数の最大値・最小値と逆関数(pp.76-80) 1次関数の最大値・最小値を求めることができる.
6週 2次関数のグラフ(pp.81-84) 2次関数の性質を理解することができる.
7週 2次関数のグラフ(pp.85-86) 2次関数のグラフをかくことができる.
8週 中間試験
4thQ
9週 2次関数のグラフと2次方程式(pp.87-89) グラフと2次方程式の解の関係が理解できる.
10週 2次関数のグラフと2次不等式(pp.90-93) 2次不等式を解くことができる.
11週 2次関数の最大値・最小値(pp.94-95) 2次関数の最大値・最小値を求めることができる.
12週 2次関数の逆関数(pp.96-97) 逆関数を求めることができる.
13週 無理関数(pp.98-100) 無理関数のグラフをかくことができる.
14週 分数関数,べき関数(pp.101-105) 分数関数・べき関数のグラフをかくことができる.
15週 偶関数・奇関数(pp.106-107) 偶関数と奇関数を区別できる.
16週 期末試験

評価割合

定期試験レポートその他提出物その他合計
総合評価割合702550100
知識の基本的な理解60100070
思考・推論・創造への適応力1000010
主体的・継続的な学習意欲0155020