システム数理工学

科目基礎情報

学校 大分工業高等専門学校 開講年度 平成30年度 (2018年度)
授業科目 システム数理工学
科目番号 30AES105 科目区分 専門 / 選択
授業形態 授業 単位の種別と単位数 学修単位: 2
開設学科 専攻科電気電子情報工学専攻 対象学年 専1
開設期 前期 週時間数 前期:2
教科書/教材 プリント使用
担当教員 佐藤 秀則

到達目標

(1) 多くの動的な現象を数式やベクトル場で表現できる.(定期試験)
(2) 線形の力学系の解を導くことができる. (課題,定期試験)
(3) 力学系の枠の中で捉え,現象の内部にどのような構造があるかを理解できる.(定期試験)

ルーブリック

理想的な到達レベルの目安標準的な到達レベルの目安未到達レベルの目安
評価項目1多くの動的な現象を数式やベクトル場でよく表現できる多くの動的な現象を数式やベクトル場で表現できる多くの動的な現象を数式やベクトル場で表現できない
評価項目2線形の力学系の解を導くことがよくできる線形の力学系の解を導くことができる線形の力学系の解を導くことができない
評価項目3力学系の枠の中で捉え,現象の内部にどのような構造があるかをよく理解できる力学系の枠の中で捉え,現象の内部にどのような構造があるかを理解できる力学系の枠の中で捉え,現象の内部にどのような構造があるかを理解できない

学科の到達目標項目との関係

学習・教育到達度目標 (E1) 説明 閉じる
JABEE 1(2)(d)(1) 説明 閉じる

教育方法等

概要:
さまざまな現象は有限あるいは無限の要素からなる集まりの相互作用として理解され,そのような仕組み全体をシステムと称している.また,システムの時間変化を強調する場合は力学系(ダイナミカル・システム)と称することもある.講義では,微分方程式もしくは差分方程式で表わされる力学系を取り扱う.まずいろいろな力学系の例を示した上で,基本的事項を説明する.次に線形系の力学系の解法を学ぶ.その後,線形でない場合にも適用できる力学場の流れという考え方を通して,力学系の基礎的な概念を学んだ上で非線形システムの不動点とその性質を表現する線形化方程式について学び,その後さらに,パラメータの入った力学系の理論として分岐現象を紹介する.
授業の進め方・方法:
◯プリント使用
◯線形代数学,微分方程式,電気回路の過渡現象の基礎を復習しておくこと.
注意点:

授業計画

授業内容 週ごとの到達目標
前期
1stQ
1週 1.1 力学系 力学系とはどういうものかを理解できる
2週 1.2 差分方程式と確率過程 力学系とはどういうものかを理解できる
3週 2.1 線形微分方程式と座標変換 座標変換と対角化について理解できる
4週 2.2 指数が行列の指数関数 指数が行列の指数関数を計算できる
5週 2.3 複素固有値 複素固有値をもつ行列の指数関数が計算できる
6週 2.4 Jordan標準形 退化した行列の指数関数が計算できる
7週 2.5 非自律線形系 非同次線形微分方程式の解について理解できる
8週 3.1 非線形力学場と線形化方程式 非線形力学場の平衡点まわりの線形化ができる
2ndQ
9週 3.2 勾配系とハミルトン系 勾配系とハミルトン系の性質を理解できる
10週 3.3 極限周期軌道 極限周期軌道について理解できる
11週 4.1 構造安定性と分岐 分岐現象と構造安定性を理解できる
12週 4.2 カオス カオス現象を理解できる
13週 5.1 常微分方程式の初期値問題 常微分方程式の初期値問題を理解できる
14週 復習
15週 前期期末試験
16週 前期期末試験の解答と解説

モデルコアカリキュラムの学習内容と到達目標

分類分野学習内容学習内容の到達目標到達レベル授業週

評価割合

試験課題合計
総合評価割合9010100
基礎的能力601070
専門的能力30030
分野横断的能力000