線形代数学

科目基礎情報

学校 鹿児島工業高等専門学校 開講年度 令和03年度 (2021年度)
授業科目 線形代数学
科目番号 0023 科目区分 専門 / 選択
授業形態 講義 単位の種別と単位数 学修単位: 2
開設学科 機械・電子システム工学専攻 対象学年 専1
開設期 前期 週時間数 2
教科書/教材 テキスト 線形代数 小寺平治著 共立出版/大学編入のための数学問題集 碓氷久他著 大日本図書
担当教員 嶋根 紀仁

目的・到達目標

(1) ベクトル空間と線形写像への理解を深める
(2) 固有値・固有ベクトルへの理解を深め、行列の対角化・三角化とその応用を行う

ルーブリック

理想的な到達レベルの目安標準的な到達レベルの目安未到達レベルの目安
行列の対角化行列の対角化を問題解決に利用できる。行列の対角化とその簡単な応用ができる。 エルミート行列をユニタリー行列によって対角化できる。行列の固有値・固有ベクトルを求めることができない。 複素ベクトルの内積を求めることができない。
行列の三角化行列の三角化を問題解決に利用できる。行列の三角化ができる。 2次行列のジョルダン標準形を求めることができる。 指数行列を用いて、簡単な線形微分方程式を解くことができる。行列の対角化や三角化ができない。

学科の到達目標項目との関係

学習・教育到達目標 3-1 説明 閉じる
JABEE(2012)基準 1(2)(c) 説明 閉じる
教育プログラムの科目分類 (2)① 説明 閉じる

教育方法等

概要:
(1) 鹿児島高専準学士課程で履修した線形代数の知識を前提とする
(2) 線形代数の概念と演算は理工系学問の基礎として多くの分野で利用されている
授業の進め方と授業内容・方法:
ベクトル空間と線形写像において複素計量ベクトル空間とユニタリー変換の導入、固有値問題において行列の対角化と三角化およびその基本的な応用を講義形式で行う
講義:〔授業(90分)+自学自習(210分)〕×15回
注意点:
(1) 予習として既習内容を確認しておくこと
(2) 復習により要点をつかみ基礎概念,演算方法を理解すること
(3) 自学自習として各自のレベルにあった問題を解くことにより、基礎概念の理解だけでなく、演算方法の定着をはかること

授業の属性・履修上の区分

アクティブラーニング
ICT 利用
遠隔授業対応
実務経験のある教員による授業

授業計画

授業内容・方法 週ごとの到達目標
前期
1stQ
1週 ベクトル空間 ベクトル空間の意味が理解できる
2週 ベクトル空間の基底 ベクトル空間の基底や次元が理解できる
3週 線形写像 線形写像の意味が理解できる
4週 線形写像の表現行列 線形写像の表現行列が理解できる
5週 内積空間 内積空間の意味が理解でき、複素ベクトルの自然内積を求めることができる
正規直交規定の意味が理解できる
6週 ユニタリー変換 ユニタリー変換の意味が理解できる
7週 固有値・固有ベクトル 行列の固有値・固有ベクトルを求めることができる
8週 行列の対角化 行列の対角化とその簡単な応用ができる
2ndQ
9週 行列の三角化 行列の三角化ができる
10週 正規行列の対角化 正規行列の対角化ができる
11週 ユニタリー行列による対角化 エルミート行列をユニタリー行列によって対角化できる
12週 2次行列のジョルダン標準形 2次行列のジョルダン標準形を求めることができる
13週 指数行列 指数行列の意味が理解できる
14週 連立線形微分方程式 簡単な線形微分方程式を解くことができる
15週 期末試験 固有値問題について達成度を確認する
16週 答案返却 試験において、間違えた部分を自分の課題として把握する

評価割合

期末試験合計
総合評価割合100100
基礎的レベル6060
標準的な到達レベル2020
理想的な到達レベル2020