Akashi College		Year	2023		Course Title	Electrical and Electronics Engineering I
Course Information						
Course Code	5437			Course Category	Specialized / Compulsory	
Class Format	Lecture			Credits	School Credit: 1	
Department	Mechanical Engineering			Student Grade	4th	
Term	Second Semester			Classes per Week	2	
Textbook and/or Teaching Materials	Upload reference material to Moodle.					
Instructor	HOSOKAWA Atsuishi					
Course Objectives						
1) Can determine combined resistance/conductance, and combined impedance/admittance. 2) Can determine the voltage and current of an AC circuit using circuit equations involving differentials and integrals. 3) Can determine the voltage and current of an AC circuit using the vector notation. 4) Understand resonant circuits and mutual inductance circuits.						

Rubric

	Ideal Level	Standard Level	Unacceptable Level
Achievement 1	Can determine combined resistance/conductance, and combined impedance/admittance of various electrical circuits.	Can determine combined resistance/conductance, and combined impedance/admittance.	Cannot determine both combined resistance/conductance, and combined impedance/admittance.
Achievement 2	Can analyze various AC circuits using circuit equations involving differentials and integrals.	Can determine the voltage and current of an AC circuit using circuit equations involving differentials and integrals.	Cannot create an AC circuit equation using circuit equations involving differentials and integrals.
Achievement 3	Can analyze various AC circuits using the vector notation.	Can determine the voltage and current of an AC circuit using the vector notation.	Do not understand the vector notation
	Can analyze resonant and mutual induction circuits.	Understand resonant circuits and mutual induction circuits.	Do not understand either or both the resonance circuit and/or the mutual induction circuit.

Assigned Department Objectives

Teaching Method

Outline	An electrical circuit consists of elements of electrical resistance, inductance, and capacitance, and forms the basics of electrical engineering. We will learn about the relationship between current and voltage in electrical circuits, especially AC circuits, and how to analyze basic electrical circuits. The instructor who have been developing medical equipment in a company will take advantage of their experience to teach in class.
Style	Classes are mainly conducted through note-taking. We will refer to the content of handouts as appropriate for explanation. There will be exercises every two to three weeks of lectures to check students' understanding.
Notice	Keep making effort to solve problems by yourself, as exercises take place regularly. Students who miss $1 / 4$ or more of classes will not be eligible for a grade evaluation.

Characteristics of Class / Division in Learning

\square Active Learning				\square Aided by ICT	『 Applicable	Remote Class	Instructor Professionally Experienced
Course Plan							
			Theme			Goals	
		1st	DC circuits			Understand Ohm's Law, Kirchhoff's Law, and the direct and parallel circuits.	
		2nd	AC circuit elements			Understand the electrical resistance, inductance, and capacitance used in alternating circuits.	
		3rd	AC circuit equation			Understand the circuit equation for an alternating circuit consisting of electrical resistance, inductance, and capacitance.	
	3rd Quarter	4th	Exercise on the content from weeks 1 to 3			Understand the content from weeks 1 to 3.	
		5th	AC circuit analysis using the vector notation			Understand the vector notation of voltage and current and the method of analyzing circuits using the vector notation.	
2nd		6th	Phasor diagrams			Understand how to draw Phasor diagrams.	
Semeste		7th	Exercise on the content from weeks 5 to 6			Understand the content from weeks 5 to 6.	
		8th	Midterm exam			Understand the content from weeks 1 to 6.	
		9th	Miscellaneous theorem concerning circuit analysis (1)			Understand how to create loop equations and nodal equations.	
		10th	Miscellaneous theorem concerning circuit analysis (2)			Understand the superposition theorem, and Thevenin's and Norton's theorems.	
	4th Quarter	11th	Frequency response of the CR and RC circuits			Understand the frequency response of the CR and RC circuits and the high and low range pass circuits.	
		12th	Exercise on the content from weeks 9 to 11			Understand the content from weeks 9 to 11.	
		13th	Resonant circuits			Understand resonance phenomena and RLC resonance circuits in electrical circuits.	

	14th		Mutual induction (magnetic coupling) circuits		Understand mutual induction(magnetic bond) circuits that are bonded by mutual inductance.	
	15th		Exercise on the content from weeks 13 to 14		Understand the content from weeks 13 to 14.	
	16th		Final exam			from weeks 9 to 14.
Evaluation Method and Weight (\%)						
		Examination		Exercise	Task	Total
Subtotal		70		15	15	100
Basic Proficiency		0		0	0	0
Specialized Proficiency		70		15	15	100
Cross Area Proficiency		0		0	0	0

