		専門学校	開講年度 令和06年度 (20		024年度) 授		業科目	CAE		
科目基礎	門育報	F4.03			TAIDE ()		===	*+n		
科目番号授業形態		5107 授業			7	科目区分 専門 /				
開設学科					単位の種別と単位数学修単位:対象学年5			2		
開設期			週時間数	2						
教科書/教	<u></u>		旭吋间数							
担当教員	[2]	数員作成資 比嘉 吉一	14 1							
到達目標	<u> </u>									
設計結果の 【V-A-1】 【V-A-7】)評価のため 物体に力か プログラミ	「作用すること	によって生ずるナ	ミュレーション能力 1学現象をコンピュ い方を考えることが	ータートで可視化?	をする。	ことで, 理	理解・説明することができる.		
ルーブリ	<u> リック</u>		I	I						
1= /ul- /	7_b ~ ===================================	10±11 —	理想的な到達レベルの目安		標準的な到達レベルの目安 		3安	最低限必要な到達レベル(可)		
偏微分方程式の離散化法として , 有限要素法の基礎知識を身につ ける.			境界条件を含めた離散化方程式を 導出することができる.		計算条件に合わせた離散化方程式 を導出することができる.			・ 有限要素法を用いた離散化方程式 ・ の一般式を導出することができる ・		
応力-ひずみ関係及び変位-ひずみ 関係が数値計算上でどのように扱 われているか理解できる.			計算条件に合わせた離散化式を導出することができ、状況に応じて複数の計算方法を複合的に活用することができる.		計算条件や計算方法に合わせた基礎方程式の離散化式を導出することができる.			基本的な離散化式を導出し,一般 的な計算方法を適用することがで きる.		
構築して数計の段階で	如何計算を 引	†算モデルを ≷行し,実設 るデータを構 ける.	得られた数値解デルの妥当性をる.	を用いて, 計算モ 検討し, 説明でき	与えられた条件に対して適切な計 算モデルを構築でき,適切な境界 条件を設定できる.			与えられた計算条件に沿った計算 モデルを構築でき,適切な方程式 を選定することができる.		
,数値解析 解となって	付結果がある。 おまれる	R条件により 3限定された 5理解し,数 4できる.	計算する際に用いた仮定や条件と 得られた数値解を結びつけて説明 できる. 得られた数値解が					得られた数値解が境界条件を満た していることを確認できる.		
学科の到	達目標項	目との関係	Ŕ			_				
教育方法	等									
概要		コンピュー	夕を利用して製品	品の機能・性能解析	や成形性・加工性	を検討	するCAEの)概念,数理モデル化と数理解析手法に		
授業の進め)方・方法	単元に関す用いた有限	するとともに、代表的な用途である変形・応力解析を行い、理解を深める。 る座学のみならず、理解度向上のための演習を行う、また、実際の数値シミュレーション例としてFortranを 要素解析も実施する、解析対象の離散化・解析結果の可視化など、様々な場面で能動的な学習を要求される							
\ 		,		引・課題に取り組む の常習問題 1.目標		T	o-z ==+			
注意点	3.h4L = 1.4		10ない、項目ごと	(の) 演習課題と 最終	課題を総合して評価	回りる	ひで, 要3	される提出物は必ず提出のこと.		
		<u> </u>	E ICT NIE							
図 アクテ	ィブラーニ	<i>7</i> 7	☑ ICT 利用		□ 遠隔授業対応			□ 実務経験のある教員による授業		
授美計画	1	週 招				調ブレ	の到達目植	西		
	3rdQ	て 1週 で	₹丼Y谷 AEの定義や利用のための基礎知識などの概要につい ∵学ぶ ・ラス構造物のマトリクス解析法(1)				<u>少到连口(</u>	क		
後期			面トラス解析(はり要素)について学ぶ(1)【航			【V-A-3:1-3】トラスジョイント部におけるつりあい 条件が理解できる.				
		3週]	面トラス解析(はり要素)について学ぶ(2)【航			【V-A-3:1-3】トラスジョイント部におけるつりあい 条件が理解できる。				
		4週 】	面トラス解析(はり要素)について学ぶ(3)【航			【V-A-3:1-3】トラスジョイント部におけるつりあい 条件が理解できる.				
		5週 円	面トラス解析(は	はり要素)に関する	課題を作成する					
			限要素法(1)・応力とひずみ,変位とひずみ関係 について学ぶ			【V-A-3:12-2】応カーひずみ関係式について説明ができる				
		7週 7	限要素法(2)・2次元平面問題に対する応力-ひず 関係について学ぶ			【V-A-3:12-2】応カーひずみ関係式について説明ができる				
			限要素法(3)・離散化方程式の組み立てについて ぶ(1)							
	4thQ	9週 -	「限要素法(4)・エネルギ原理と仮想仕事の原理 いて学ぶ 			【V-A-3:17-1】支配方程式としての最小ポテンシャルの原理が理解できる				
			性体の有限要素解析(1)・離散化方程式の組み立 について学ぶ			【V-A-3:12-2】二次元平面近似における応力 - ひずみ関係が理解できる.				
			単性体の有限要素解析(2)・2次元弾性体に対する 同限要素プログラム			【V-A-7:1-1】2次元弾性解析プログラムが実行できる. 【V-A-7:2-1】2次元弾性解析プログラム中の定数,変数が説明できる. 【V-A-7:3-1】演算子の種類と優先順位がわかる. 【V-A-7:4-1】データを入力し,結果を出力するプログラムを作成できる.				
		12週 建	単性体の有限要素解析(1)・最終課題作成			【V-A-7:3-1】演算子の種類と優先順位がわかる. 【V-A-7:4-1】所望の入力データを作成し,実行した 後,出力データを用いて可視化できる 【V-A-7:6-1】2次元配列のプログラムを実行し,理 解できる.				
	-									

	:	13週	弾性体の有限型	要素解析(2)・最終課題		【V-A· 【V-A· 後,出 【V-A· 解でき	-7:3-1】演算子の種類。 -7:4-1】所望の入力デー カデータを用いて可視化 -7:6-1】2次元配列のフ る.	と優先順位がわかる. ータを作成し, 実行した できる プログラムを実行し, 理			
		14週	弾性体の有限要素解析(3)・最終課題作成				【V-A-7:3-1】演算子の種類と優先順位がわかる. 【V-A-7:4-1】所望の入力データを作成し,実行した後,出力データを用いて可視化できる 【V-A-7:6-1】2次元配列のプログラムを実行し,理解できる.				
	:	15週	弾性体の有限型	要素解析(4)・最終課題	題作成	【V-A-7:3-1】演算子の種類と優先順位がわかる. 【V-A-7:4-1】所望の入力データを作成し,実行した後,出力データを用いて可視化できる 【V-A-7:6-1】2次元配列のプログラムを実行し,理解できる.					
		16週									
評価割合											
		試験		小テスト	レポート		その他 (演習課題・発表・実技・成果物)	合計			
総合評価割合	<u></u>	0		0	70		30	100			
基礎的理解	-	0		0	40		20	60			
応用力(実践・専門・ 融合)		0		0	20		0	20			
社会性(プレゼン・コ ミュニケーション・ PBL)		0		0	0		0	0			
主体的・継続的学修意 欲		0		0 10		10		20			