—————————————————————————————————————	半月	事門学校	開講年度	令和06年度 (2	2024年度)	控	業科目	材料学 I		
		かいプグ		文 十 00日下に	-04寸十/又/	ן ועפֿ	<u>⊼′</u> 11□	1017TT I		
科目番号	たI月刊	R06M316			科目区分		専門 / 必修			
授業形態		授業		1						
開設学科		機械工学科		対象学年	単位の種別と単位数履修単位:対象学年3		_1			
開設期		前期	f	週時間数		<u>. </u>				
教科書/教	·····································	(教科書)	打越 二彌 著,「	版」,東京電機大学出版局 材料 改訂版 L						
担当教員		松本佳久	書2)久保井 徳洋, 樫原 恵藏 共著「材料学」, ゴロナ社							
<u>123 教员</u> 到達目標	<u> </u>									
(1) 機械材 (2) 材料の (3) 金属・ (4) 金属材 (5) 自主的	オ料の性質と D機械的性質 ・合金の結晶 オ料の変形と り・継続的な	, その評価方 と状態変化, 結晶, 強化方	「法と変形機構を理 合金状態図の基本 「法とその原理を理	5, 特徴を理解する 解する.(定期試 を理解する.(定 解する.(定期試 深めることができ	験と課題) 期試験と課題) 験と課題)					
ルーブリ	ノック				_			1		
到達目標 (1) の評価指標			理想的な到達レ/機械材料の性質。の基本と表し方,金属・合金の結びつけることが	と種類,結晶構造 特徴を理解し 詰晶と状態変化を	標準的な到達レー 機械材料の性質の基本を理解し、の充填率を計算・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	と種類.	結晶構造	未到達レベルの目安 機械材料の性質と種類,結晶構造 の基本が理解できない		
到達目標 (2) の評価指標			材料の機械的性質と変形機構を理解	質, その評価方法 解し, 機械材料の 兼性, 最適な試験	材料の機械的性質を理解し、各パー 味と適用条件を表	質, その ラメータ 示すこと	評価方法 の持つ意 ができる	材料の機械的性質, その評価方法 を理解できない		
到達目標 (3) の評価指標			金状態図の基本で 化と凝固過程を記	晶と状態変化,合 を理解し,状態変 説明できる.	合金状態図の理解であることができることができる。	理解の中で出てくる で組織割合を計算 きる.		合金状態図が表す意味を理解でき ない		
到達目標 (4) の評価指標			とその原理を埋 適な強化方法を打		金属材料の強化を蓄えることができ	化方法を知識として できる.		金属材料の強化方法を理解できない.		
到達目標 (5) の評価指標			金属材料の基本体の性質を利用したできる.	構造を理解し, そ に適用方法を説明	金属材料の基本体 を有し,説明が ⁻		質の知識	金属材料の基本構造と性質の知識 を有していない.		
学科の到	到達目標項	目との関係	系							
学習・教育	育目標 (B2)									
教育方法	去等									
概要		, 材料学の の平衡状態 (科目情報	的・工学的な特性や特徴を理解することは機械設計や生産技術において必要不可欠とされる.本講義では初歩として,金属の原子配列や変形メカニズム,機械的性質の定義や評価方法について解説する.また合金図の理解の仕方について教授し,基礎的事項とその応用ならびに活用方法についての説明を展開する. {} トライボロジー,機械工作法 I,機械工作法 II							
材料 授業の進め方・方法 /, 性 (事		材料系領域,性質,用	域として,機械で用いられる材料の基礎的な事柄を学ぶ。ここでは主に金属及び合金について,種類,製法 用途,加工性の基礎的知識を身につけるための授業を展開する.							
注意点		2. 授業中の (自学上の	5プリントには,授業で補足する点を書き込むとよい.また問題を解く場合に使用するので,整理してファイおくとよい. おくとよい. D課題,配布資料の要点をまとめてノートに整理すること.							
評価		1,5 3.0.3	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			17	_		
到達目標の (総合評値・総合評値・総合評値では ・総合評値では ・のででは ・のででは ・のででは ・のででは ・のででは ・のででは ・のででは ・のででは ・のででは ・のででは ・のででは ・のででは ・のででは ・のででは ・のででは ・のででは ・のででは ・のででは ・のでは ・の	画) 画=0.8× (2 得の条件につ 画が60点以」 こついて) は総合評価が 正当な理由	2回の定期試験 いて) を合格とする 60点に満たが なく定期試験	険の平均) + 0.2× る. よい者に対して実施	と課題で評価する. (課題) 値する. なお, 全で は再試験は行わない	この課題を提出した	さ者に対し	して受験資	資格を与える.		
		上の区分								
授業の属		. "								
授業の属	事性・ 復修 ティブラーニ	ング	□ ICT 利用		② 遠隔授業対応	<u>2</u>		☑ 実務経験のある教員による授業		
授業の属 □ アクテ	ティブラーニ	ング	□ ICT 利用		☑ 遠隔授業対応	<u>,</u>		☑ 実務経験のある教員による授業		
授業の属 □ アクテ	ティブラーニ				☑ 遠隔授業対応	Γ				
授業の属 □ アクテ	ティブラーニ	週 担	受業内容		☑ 遠隔授業対応	Γ	D到達目標			
授業の属	ティブラーニ	週 打	受業内容 1. 機械材料の開発 1)材料の形態と昨 2. 結晶構造		☑ 遠隔授業対応	週ごとの材料開発	その変遷と			
授業の属 □ アクテ	ティブラーニ	週 担 1	受業内容 1.機械材料の開発 1)材料の形態と昨 2.結晶構造 1)結晶格子 2.結晶構造 2.結晶構造 2)最密充填構造		☑ 遠隔授業対応	週ごとの 材料開発 ることの	その変遷と	上動向を理解し,優れた材料特性を得		
授業の原 □ アクラ 授業計画	重	週 注 : 1 : 1 : 2 : 3 : 4 : 4 : 4 : 4 : 4 : 4 : 4 : 4 : 4	受業内容 1.機械材料の開発 1.対料の形態と昨 2.結晶構造 1.)結晶格子 2.結晶構造		☑ 遠隔授業対応	週ごとの 材料開発 ることの 結晶構造	その変遷 & D意味を理 造における	票 と動向を理解し,優れた材料特性を得 理解できる.		

基礎的能力					0 0			0				
総合評価割合 80							20					
				試	 験		課題		合計			
評価割合	•										•	
						合金の状態図の見方を説明できる。 塑性変形の起り方を説明できる。				3	前12,前 13,前14 前7,前9	
						金属と合金の状態変化および凝固過程を説明できる。			3	前5,前 10,前11		
						金属と合金の結晶構造を説明できる。			3	前2,前3,前 4		
					1/2 本4	機械的性質と温度の関係およびクリープ現象を説明できる。			3	前6,前7		
					 材料	疲労の意味を理解し、疲労試験とS-N曲線を説明できる。			3	前7		
等门的能力 	分野別の 門工学	1 (成人)		刀钳		脆性および靱性の意味を理解し、衝撃試験による粘り強さの試験 方法を説明できる。				3	前6,前7	
専門的能力	 分野別σ)専) 中 機械系分野			硬さの表し方および硬さ試験の原理を説明できる。				3	前6,前7	
						引張試験の方法を理解し、応力-ひずみ線図を説明できる。			3.	3	前6,前7	
					工作	明できる。			3	前1		
						金属材料、非金属材料、複合材料、機能性材料の性質と用途を説					前1	
						軸対称の圧縮を初等解析法により解くことができる。 機械材料に求められる性質を説明できる。				3	前9	
						0						
						力学の基本概念が説明できる。 平行平板の平面ひずみ圧縮を初等解析法により解くことができる			ができる	3	前9	
					3 11.31	降伏、加工硬化、降伏条件式、相当応力、及び体積一定則の塑性っ					前9	
分類	1	- i	分野	, ш	学習内容	<u>- 日 8</u> 学習内容の到達目標				到達レベル	授業週	
 モデルコ	アカリキ				内容と到達			-				
		16ป	周	前期単	明末試験の解	P答と解説 理解度確認と分からなかっ			うなかった			
		15ป						到達目標 (3), (4), (5)				
		14浏	<u>周</u>		5. 合金の状態図 (2)共晶型			共晶型状態図が作成されていく過程やその読み方および使い方が理解できる。また、融液から常温の固相状態に至る、それぞれの段階における相の名称や状態、濃度や質量比を理解できる。それ以外に各反応内容と状態変化を学び、状態図の読み方が説明できる。				
		13ป	<u>周</u>		全率固溶型			全率固溶型の状態図が表す組織を理解できる。				
2	2ndQ			(3)相律,合金状態図(溶解度曲線) 5.合金の状態図			時の, てこの関係, 液・固相線, 溶解度曲線等が理解できる.					
				4. 材料の状態変化			融解・凝固現象、潜熱および変態点について学び、熱					
		11认		4. 标	材料の状態変化 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・		る. 純金属と合金の凝固 る.	国過程の違	いが理解でき	:, 説明でき		
		10ปั	0週 4.		前期中間試験の解答と解説 1. 材料の状態変化 1)相変化と変態点			材料の状態変化における、相変化と変態点が理解でき				
					前期中間試験			到達目標 (1), (2) 理解度確認と分からなかった点を把握し、理解できる				
-		8週		3. 材料の機械的(4)転位と変形機構				転位の概念と各種変形機構が理解できる。また、降伏 加工硬化、降伏条件式、相当応力及び体積一定則の 型性力学の基本理念が説明できる。				
		7週	7週 (2)		材料の機械的'性加工 属のすべり変		例限度,弾性限度および降伏点,硬さ測定原理,延性 ,展性,靱性あるいは脆性,疲労破壊,S-N 曲線の見 方や使い方を示すことが出来る.熱間加工,温間加工 および冷間加工の長短所や変形機構を理解できる.					
		0週			(1)引張, 硬さ, 靱性, 疲労			できる. 機械的性質の検査方法を理解し、 荷重 - 伸び線図 ト				
		6週		(6)結	結晶構造の欠陥 材料の機械的性質と変形			する方法を理解できる. 引張, 硬さ, 靱性, 疲労の各物理的性質の意味が理解				
		5週	5週 (結晶構造 (5)合金の原子配列 			合金の濃度を原子%および質量%の両方で計算,換算				

専門的能力