沼津	工業高等	専門学校	開講年度 令和	104年度 (2	2022年度)	授業	美科目	システム制御工学		
科目基礎	 情報			•	•					
科目番号		2022-28	31		科目区分	Ę	専門 / 選抜			
受業形態		授業		単位の種別と単位数 学修単位: 2						
開設学科		電子制御		対象学年 5						
開設期		前期		週時間数 前期:2						
教科書/教	 材	プリント	 配布							
旦当教員		牛丸 真語]							
到達目標	Ę									
23455年第2345年第2345年第15年第15年第15年第15年第15年第15年第15年第15年第15年第1	E間モデルを の制御かり シスードンが 置一川でいる でででいる でいる でいる でいる でいる でいる でいる	を状態空間 応答を表現で のを のを のでを のでを ので で表現され ので を ので ので を ので ので を ので ので ので ので ので ので ので ので ので ので	述することができる。 にデルとして表現すること はることができる。 構成することができる。 ルータ法により状態フィー はおよび最適レギュレータ ボ系を構成し、サーボ系の は、その設計を行いこと に、制御系に対して、MATI いて説明できる。	ドバックゲィ タ法によりオ Dフィードバ トができる。	ブザーバゲインを ックゲインを設計	設計する できる。	ことがで			
レーブリ	リック									
			理想的な到達レベルの	目安	標準的な到達レ	ベルの目	安	未到達レベルの目安		
制御対象の	D構成		制御系の大別、制御系計が明確にできる。	制御系の大別、制御系の構成と設計が明確にできる。			構成と設	制御系の大別、制御系の構成と設計ができない。		
制御対象の	モデル化		制御対象の物理モデリる。	制御対象の物理モデリングがある 程度できる。			制御対象の物理モデリングができない。			
大態空間モ	デル		状態空間モデルを正確に記述でき る。		状態空間モデルを記述できる。			状態空間モデルを記述できない。		
泉形システ	一ム応答		線形システムの応答を正確に計算 できる。		線形システムの応答を表現できる。		現できる	線形システムの応答を表現でき い。		
状態フィードバック制御					状態フィードバック制御、可制御 性について説明できる。		可制御	状態フィードバック制御、可制作性について説明できない。		
状態観測器			オブザーバを設計でき	オブザーバを設計できる。		観測性にて	ついて説	オブザーバ、可観測性について記明できない。		
サーボ系			サーボ系のフィードバ を設計できる。	サーボ系のフィードバックゲイン を設計できる。 サーボ系の構成、 ィードバックを伴 いて説明できる。		伴うサース	. 状態フ ボ系につ	サーボ系の構成、積分器、状態 イードバックを伴うサーボ系に いて説明できない。		
離散時間系			離散系の状態空間モデ 、フィードバックゲイできる。	ルに対して ンの設計が	連続系の状態空間の状態空間モデ			連続系の状態空間モデルを離削の状態空間モデルに変換できた。		
最適フィー	- ドバック制	川御	最適フィードバック制 ギュレータを構成でき	最適フィードバック制御と最適レ 最適 ギュレータを構成できる。			と最適レ できる。	最適フィードバック制御と最適し ギュレータについて説明できない。		
カルマンフ	フィルター		カルマンフィルターと の関係を示すことがで	カルマンフィルターとオブザーバ の関係を示すことができる。		ターについ	ハて説明	カルマンフィルターについて説明 できない。		
量子化・飽和問題				MATLAB/Simulink によるシミュ		和問題にて	ついて説	量子化問題、飽和問題について訪 明できない。		
外乱オブザーバ			外乱オブザーバの設計	ができる。	外乱オブザーバについて説明でき る。			外乱オブザーバについて説明でき ない。		
学科の到	」達目標項	目との関	係							
		票 (本科のみ								
教育方法										
既要		ルに基づ に基づく すること	く線形制御理論は、様々な 、フィードバック制御系の を目的とする。	なシステムの Dゲイン設計	制御に応用されて 、オブザーバの設	いる。本 計、サー	講義では、 ボ系の制	制御理論の一つである状態空間モラ 、状態空間モデルに基づく制御理論 卸、離散時間系の制御について習得		
受業の進め	方・方法	の演習課	題はレボートとして提出す	する。				課題を行いその理解を深める。一部 		
注意点		1. 評価 2. 中間	については、評価割合に従 試験を授業時間内に実施す	ぜって行いま することがあ	す。ただし、適宜 ります。	再試や追	加課題を	課し、加点することがあります。 		
受業の属	性・履修	上の区分								
アクテ	ィブラーニ	ング	□ ICT 利用		□ 遠隔授業対応	<u>.</u>		□ 実務経験のある教員による拐		
受業計画										
		週	授業内容			週ごとの)到達目標			
		1週	ガイダンス	プログラムの学習・			・教育目標、授業概要・目標、スク 法と基準を理解できる。制御系の力 る。			
		-				†	る。 明し、制御対象のモデル化の例を			

2週

3週

4週

1stQ

前期

制御系の構成と制御対象のモデル化

状態空間モデル

線形自由システム

制御系の構成を説明し、制御対象のモデル化の例を挙 げることができる。

線形自由システムの安定性、状態方程式の対角化およ び解表現について説明できる。

状態空間モデルについて説明できる。

			1					娘形シフテム広答につい	١7	比能堆移行列 馬丸パス	
		5週	線形システムの応答				線形システム応答について、状態推移行列、畳み込み 積分、ラブラス変換を用いて表現できる。				
		6週	状態フ	イードバッ	ク制御	状態フィードバック制御 る。			即、豆	J制御性について説明でき	
		7週	極配置	法			極配置法によるフィードバックゲインの設計について 説明し、ファイー度バックゲインを説明できる。				
		8週	最適レ	ギュレータ			最適レギュレータの設計法について説明すること き、ゲイン設計を行うことができる。				
	2ndQ		オブザーバとその設計				オブザーバ、可観測性について説明することができる				
		9週					。 MATLABを使ったオブザーバの設計を行うことができ る。				
		10週	サーボ系					サーボ系の構成、積分器、状態フィードバックを伴う サーボ系を設計することができる。			
		11週	離散時	離散時間系のモデル				離散時間系の状態空間モデルを記述でき、レギュレー タ系のフィードバックゲインを設計できる。			
		12週	離散時間系の制御					サーボ系の離散時間制御系を記述でき、そのフィード バックゲインをの設計ができる。			
		13週	量子化	・飽和問題			量子化問題、飽和問題について説明する			ヽて説明するこができる。	
		14週	倒立振子の現実的モデルと			レとシミュレーション		倒立振子の現実的モデルを記述でき、MATLAB てデジタル制御系の設計、デジタルサーボ系を シミュレーションを行うことができる。			
		15週	最適フィードバック制御とカルマンフィルター					最適フィードバック制御の概念とカルマンフィルター を用いたオブザーバ設計について説明することができ る。			
		16週	外乱オブザーバ				外乱オブザーバの概念と設計法について説明するこが できる。				
モデルコス	アカリキ	ニュラムの	D学習F	内容と到達	を 目標 かんしょう かいしょう かいしょう かいしょう かいしん しんかい かいしん しんかい しんかい しんかい しんしん しんしん	Ę.					
分類 分野 学習内容 学習				内容の到達目標				到達レベル 授業週			
評価割合											
中間試験					期末試験		課題レポート		計		
総合評価割合 20						35	4	45		00	
基礎的能力 0						0	(0			
専門的能力	専門的能力 20					35	4	45		00	
分野横断的能	能力	0			0	(0				