北九州工業高等専門学校		開講年度	軍 平成30年度 (2018年度)		授業科目 高電圧工学			
科目基礎情報								
科目番号	0171			科目区分	専門 / 必修			
授業形態	授業			単位の種別と単位数	放 履修単位: 2			
開設学科	電気電子工学科			対象学年	5			
開設期	通年			週時間数	2			
教科書/教材	/教材 EEText 高電圧パルスパワー工学							
担当教員	旦当教員 福澤 剛							
到達目標								
1. 気体、液体、固体の絶縁破壊現象を説明できる。B①② 2. ブラズマの生成と、ブラズマの振舞いを説明できる。B①②、SB①								

- 2. プラズマの生成と、プラズマの振舞いを説明できる。B①②、SB①3. 高電圧の発生法と計測法を説明できる。B①②、SB①4. 高電圧発生回路を製作できる。B①②、SB①②

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安
評価項目1	気体の絶縁破壊現象を説明できた 上で、液体、固体特有の絶縁破壊 現象を説明できる。	気体の性質(状態方程式、速度分布、平均自由行程など)、荷電粒子の消失過程を理解し、気体の絶縁破壊現象を説明できる。	気体の性質、荷電粒子の消失過程 が理解できない。
評価項目2	プラズマの特徴とミクロ・マクロ 的な取扱、生成法を説明できる。 製造現場で利用されるプラズマと 関連づけられる。	プラズマの特徴(準中性、サイズ など)を理解し、プラズマのミク 口的な取扱を説明できる。 プラズマの生成法を説明できる。	プラズマと電磁界の相互作用を理 解できない。
評価項目3	高電圧発生装置、高電圧・大電流 の計測法の原理を説明できる。 バルス伝送線路について説明でき る。 高電圧現象の産業への利用例を説 明できる。	高電圧発生装置、高電圧・大電流 の計測法の原理を説明できる。	指定された高電圧発生装置、高電 圧・大電流の計測法の原理を説明 できない。

学科の到達目標項目との関係

教育方法等

概要	電子部品の絶縁膜の絶縁破壊から雷まで、高電圧・強電界による絶縁破壊現象であり、様々な事故の原因となる。一方、絶縁破壊現象で生じる放電プラズマは、半導体デバイスの製造、廃棄物処理、照明などの光源にも利用される。事故の回避、プラズマの利用のために、絶縁破壊現象・プラズマ・高電圧計測等について学ぶ。
授業の進め方・方法	気体の性質、荷電粒子の振舞いからはじめ、気体、液体、固体の絶縁破壊現象、その結果生じるプラズマの特徴について学ぶ。さらに、高電圧発生方法や計測方について学ぶ。
注意点	

八志宗				
授業計	画			
		週	授業内容	週ごとの到達目標
		1週	感電事故	感電事故の原因・現象を理解し、事故防止の意識を高 める。
		2週	気体の性質	気体の密度と圧力の関係を理解する。
		3週	気体の性質	マックスウェルの速度分布、熱速度等を理解する。
	1 c+O	4週	荷電粒子の振舞い	電子と正イオンそれぞれの衝突断面積、平均自由行程 、平均衝突頻度などを理解する。
	1stQ	5週	荷電粒子の振舞い	励起、電離、再結合、付着などの現象から、絶縁破壊 しやすい状況までを理解する。
		6週	荷電粒子の振舞い	移動度、拡散など荷電粒子の挙動を理解する。
		7週	気体の絶縁破壊現象	宇宙線などと初期電子発生の関係、タウンゼント放電を理解する。
 前期		8週	中間試験	
門切		9週	答案返却、解説	
		10週	気体の絶縁破壊現象	パッシェンの法則を理解し、圧力と絶縁破壊電圧の関 係を理解する。
		11週	気体の絶縁破壊現象	ストリーマ放電を理解し、高圧、長ギャップの条件で の放電現象を理解する。
	2ndO	12週	気体の絶縁破壊現象	コロナ放電、雷放電など身近な放電現象を理解する。
	ZHUQ	13週	液体、固体、真空の絶縁破壊現象	液体、固体に特有の絶縁破壊現象を理解し、実際の高 電圧機器の絶縁対策を知る。
		14週	液体、固体、真空の絶縁破壊現象	異なる誘電体からなる複合系の絶縁破壊現象を理解する。 放電による誘電体へのダメージを理解する。
		15週	期末試験	
		16週	答案返却、解説	
		1週	プラズマの性質と生成	プラズマは物質の第4態であること、準中性などプラ ズマの特徴を理解する。
		2週	プラズマのミクロ的取扱	電磁界と荷電粒子の相互作用を理解する。
		3週	プラズマのミクロ的取扱	電磁界と荷電粒子の相互作用を理解する。
後期	3rdQ	4週	プラズマのマクロ的取扱	プラズマの流体方程式を理解する。
		5週	放電プラズマの生成	直流・高周波・マイクロ波・バリア放電など様々な放電方式を理解する。
		6週	放電プラズマの生成	直流・高周波・マイクロ波・バリア放電など様々な放電方式を理解する。

		_,E		- 一				直流・交流・パル	ス高雷圧回		 る。倍電圧発	
		7週			電圧発生回路		生回路を理解する			3 17 027		
		8週			間試験							
		9週		合系业	区却、解説				・ カリギ 翌	:i=ナーナのパ		
		10ì	周 /	パルフ	ルスパワー発生装置		各単性・誘導性工	容量性・誘導性エネルギー蓄積方式のパルスパワー発 生装置の原理と特徴を理解する。				
	11		围 ,	パルフ	ルスパワー発生装置		RLC回路の放電特	RLC回路の放電特性を理解する。				
	4thQ 12週 高電圧発:			T発牛回路の測定		ダイオードを利用 を製作し、各部の 深める。	した直流高 電圧を測定	電圧回路、 とし、高電圧	RLC放電回路 回路の理解を			
					コノニヽそヶ中内				分布定数回路、負荷との整合など、高周波の信号の取			
		14ì	周	高電圧	 E計測	<u> </u>	&いを達解する。 各種の高電圧計測法を理解する。					
14週 高竜圧 15週 定期試												
		16ì	周 :	答案近	区却、解説							
モデルコ	アカリキ	-그 ⁻	ラムの:	学習	内容と到過	全日標 全日標						
分類			分野		学習内容	学習内容の到達目	標			到達レベル	/ 授業週	
						電荷と電流、電圧	· を説明できる。			4		
						オームの法則を説	明し、電流・電	 	 きる。	4		
						AOが広外で記述して、電流で電子が表現している。 合成抵抗や分圧・分流の考え方を用いて、直流回路の計算ができる。				4		
						ブリッジ回路を計	 算し、平衡条例	‡を求められる。		4		
						電力量と電力を説				4		
								 皮数や位相などを計算 ⁻	できる。	4		
						平均値と実効値を	説明し、これら	 うを計算できる。		4		
					電気回路	R、L、C素子にお	ける正弦波電圧	と電流の関係を説明	できる。	4		
						瞬時値を用いて、	交流回路の計算	算ができる。		4		
						インピーダンスと	アドミタンスで	z説明し、これらを計算	算できる。	4		
						直列共振回路と並列共振回路の計算ができる。			4	後7		
						理想変成器を説明	できる。			4	後7	
					1	RL直列回路やRC直列回路等の単エネルギー回路の直流応答を計算し、過渡応答の特徴を説明できる。			4	後11		
		分野別の専 電気・電 門工学 系分野				RLC直列回路等の複エネルギー回路の直流応答を計算し、過渡応答の特徴を説明できる。			4	後11		
				電子		電荷及びクーロンの法則を説明でき、点電荷に働く力等を計算できる。				4	後3	
專門的能力						電界、電位、電気力線、電束を説明でき、これらを用いた計算ができる。				4	前12	
רסטנייו ודי	' 門工学		系分野			ガウスの法則を説明でき、電界の計算に用いることができる。				4	前12	
						導体の性質を説明でき、導体表面の電荷密度や電界などを計算で きる。				4		
						読電体と分極及び電束密度を説明できる。				4	前14	
						静電容量を説明でき、平行平板コンデンサ等の静電容量を計算で						
						きる。				4	後10	
						コンデンサの直列: 計算できる。	接続、並列接線	売を説明し、その合成	静電容量を	4		
					1	静電エネルギーを説明できる。				4	後10	
						電流が作る磁界をビオ・サバールの法則を用いて計算できる。				4		
						電流が作る磁界をアンペールの法則を用いて計算できる。				4		
						磁界中の電流に作用する力を説明できる。				4		
						ローレンツカを説				4		
						磁気エネルギーを	説明できる。			4		
					電子回路 電子工学	ダイオードの特徴を説明できる。			4	後7		
						電子の電荷量や質量などの基本性質を説明できる。				4	後3	
						エレクトロンボルトの定義を説明し、単位換算等の計算ができる。				4	前7	
						原子の構造を説明できる。				3	前5	
					計測 倍率器・分流器を用いた電圧・電流の測定範囲の拡大手法について説明できる。		手法につい	4	後14			
評価割合	 ì	_										
	試馬	検		発	 表	課題への取組	態度	ポートフォリオ	その他	合	計	
総合評価割				0		30	0	0	0	10		
基礎的能力				0		0	0	0	0	0		
専門的能力	70			0		30	0	0	0	10	00	
)能力 0			0		0	0	0	0	0		