熊	本高等]門学校	開講年度 令和06年度(授業科目						
科目基礎				•							
科目番号		HI1403	3	科目区分	専門 / 必修						
授業形態		授業		単位の種別と単位							
開設学科		人間情報		対象学年	4						
開設期		通年		週時間数	1						
教科書/教	 (材	安達三郎	邓/大貫繁雄 共著 「電気磁気学[第2								
担当教員 山本 直樹											
<u></u> 到達目標	<u> </u>										
1. 真空 2. 導体 3. 誘電(4. 真空	中の静電界 系と静電容 体: 誘電 中の静磁界	量: 電位化 体の性質、タ	ンの法則、電界、電位、ガウスの法則を 系数、静電容量、静電エネルギーを説明 分極、電束密度、電束に関するガウスの ビオ・サバールの法則、アンペアの法則]でき、これらを利用)法則を説明でき、こ	した計算ができる れらを利用した詞	る。 汁算ができる。					
ルーブリ	ノツク		7774745 (A. 71)	1#3#45 1 x 70x 1		ナがましがよる日立					
			理想的な到達レベルの目安	D目安 標準的な到達レベルの目安		未到達レベルの目安					
真空中の記	静電界		クーロンの法則、電界、電位、ガウスの法則をすべて説明でき、これらを利用した計算ができる。	クーロンの法則、 ウスの法則を説明 利用した基本的な	でき、これらを	クーロンの法則、電界、電位、ガウスの法則を一部分しか説明できず、これらを利用した計算ができない。					
導体系と記	静電容量		電位係数、静電容量、静電エネル ギーを全て説明でき、これらを利 用した計算ができる。	電位係数、静電容 ギーを説明でき、 た基本的な計算が	これらを利用し できる。	電位係数、静電容量、静電エネル ギーを一部分しか説明できず、こ れらを利用した計算ができない。					
誘電体			誘電体の性質、分極、電束密度、 電束に関するガウスの法則を全て 説明でき、これらを利用した計算 ができる。	誘電体の性質、分配を対してき、これらを利用的できる。	スの法則を説明 用した基本的な	誘電体の性質、分極、電束密度、 電束に関するガウスの法則を一部 分しか説明できず、これらを利用 した計算ができない。					
真空中の間			磁界、ビオ・サバールの法則、ア ンペアの法則、ローレンツカをす べて説明でき、これらを利用した 計算ができる。	磁界、ビオ・サバンペアの法則、ロー明でき、これらを な計算ができる。	ーレンツ力を説	磁界、ビオ・サバールの法則、アンペアの法則、ローレンツカを一部分しか説明できず、これらを利用した計算ができない。					
学科の至 教育方法		項目との問									
概要		本科目で	では、真空中の静電界、導体系の静電容 を行い、できる限り多くの演習問題に取	温、誘電体、真空中 10組み電気磁気学の	の静磁界に関連す	する原理や性質および諸法則につい					
授業の進む	め方・方法	には演習 ださい。 本科目に 70%、 年間単位を は自学で この科目	は2単位科目であり、規定授業時数は60 レポート (小テスト含む) 30%で行う。 合評価が60点に満たない場合は、レポー を認定しない。 ・自習について】 目は学修単位のため30時間相当の自学・	た、授業中の基本事時間である。評価は ・ - トおよび再評価試験	項の説明も良く間、評価割合にある	引き、より理解できるよう努めてく 5ように、基本的には各学期で試験 る。再評価でも60点に満たない場合					
お業の間	星性 医丛		ぱートの作成により確保する。 ▲								
	禹1生・ <i>1</i> 復1 ティブラー <u>-</u>	修上の区分 ニング	」 ICT 利用	□ 遠隔授業対応		□ 実務経験のある教員による授業					
授業計画	 5i										
以未可坚	<u> </u>	週	授業内容	1	週ごとの到達目標						
前期		1週	クーロンの法則	1	電荷及びクーロンの法則を説明でき、点電荷に働く 等を計算できる。						
		2週	電界と電気力線	=	電界、電気力線を説明でき、これらを用いた計算ができる。 電の差を説明でき、これらを思いた計算ができる。						
		3週	電位差		電位差を説明でき、これらを用いた計算ができる。						
		4週	電位		電位を説明でき、これらを用いた計算ができる。						
	1stQ	5週	等電位面と電位の傾き	算	に関わる。電位の傾きを説明でき、これらを用いた計画ができる。 はロスの注明を説明でき、雰囲の計算がだに用いる。						
		6週	ガウスの法則(1)	غ ا	こができる。	スの法則を説明でき、電界の計算などに用いるこ できる。 スの法則を説明でき、電界の計算などに用いるこ					
		7週	ガウスの法則(2)	٤	カラスの法則を説明でき、電子の計算などに用いるととができる。 前期中間範囲の試験を実施し、これらの範囲の内容に						
		8週	前期中間試験		前期中間戦団の試験を実施し、これらの戦団の内容に ついて説明および計算ができる。 導体の性質を説明でき、導体表面の電荷密度や電界な						
		9週	帯電導体の電荷分布と電界(1)	غ ا	学体の圧負を説明でき、学体衣面の電利面及で電介などを計算できる。 各種導体(同心導体球、平行平板導体など)の電界お						
	2ndQ	10週	帯電導体の電荷分布と電界(2)	4	よび電位が計算できる。 電気双極子の電界が計算できる。電位係数の定義を理						
		11週	静電界の計算、導体系		解でき、計算できる。 電位係数の計算について理解できる。静電容量を説明						
		12週	静電容量(1)	7	でき、平行平板コンデンサ等の静電容量を計算できる						

		13週	1	静電容	泽量(2)			同心導体球、無限長円筒導体、無限長平行導線等の静 電容量を計算できる。				
		14週	l	前期期末範囲の復習			前期期末範囲の復習を行い、これらの範囲の内容をより理解できる。					
		15週	l	前期期末試験								
		16週	l	答案》	支却			試験の結果から理解していなかったところを把握し、 適切な解答を理解できる。				
後期	3rdQ	1週		コンデンサの接続				静電容量の接続を説明し、その合成静電容量を計算できる。				
		2週		コン ? 率	デンサに蓄え	られるエネルギー、誘電体と比誘電		静電エネルギーを説明できる。誘電体を説明できる。				
		3週		誘電体の分極、誘電体中の電界				誘電体の分極および電束密度を説明できる。				
		4週		誘電体中のガウスの法則				電束に関するガウスの法則を説明でき、電界の計算などに用いることができる。				
		5週		誘電体	本境界面での	境界条件		境界条件を理解でき どを計算できる。	利用して屈折角、電界な			
		6週		誘電体中に蓄えられるエネルギー				このエネルギーを説明でき、エネルギー密度を計算できる。				
		7週		後期口	中間範囲の復	習		後期中間範囲の復習を行い、これらの範囲の内容をより理解できる。				
		8週		後期中間試験				後期中間範囲の試験を実施し、これらの範囲の内容に ついて説明および計算ができる。				
	4thQ	9週		磁界	1		磁界および電流に作用する力を説明できる。					
		10週	<u>l</u>	アン/	ンペアの右ねじの法則、磁束		磁束および磁束密度を説明できる。					
		11週	<u>l</u>	ビオセ	サバールの法則		電流が作る磁界をビオ・サバールの法則を用いて説明 でき、磁界の計算に用いることができる。					
		12週	l	アン⁄	ペアの法則		電流が作る磁界をアンペアの法則を用いて説明でき、 磁界の計算に用いることができる。					
		13週	l	電磁力	ל			電流に作用する力やローレンツ力を説明できる。				
		14週	週 後期期		期末範囲の復習		後期期末範囲の復習を行い、これらの範囲の内容をより理解できる。					
		15週	5週 後期期		期末試験							
		16週	l	答案》			試験の結果から理解していなかったところを把握し、 適切な解答を理解できる。					
モデルコ	アカリキ	ニュラ	ムの	学習	内容と到達	全目標						
分類		4	分野		学習内容	学習内容の到達目標	5 F			到達レベル	授業週	
	数学					ベクトルの定義を理解し、ベクトルの基本的な計算(和・差・定数倍)ができ、大きさを求めることができる。		3				
			数学			三角関数・指数関数・対数関数の導関数を求めることができる。			3			
					数学	定積分の定義と微積分の基本定理を理解し、簡単な定積分を求めることができる。			3			
						分数関数・無理関数・三角関数・指数関数・対数関数の不定積分 ・定積分を求めることができる。			3			
基礎的能力											前2,前3,前	
			物理		電気	電場・電位について説明できる。			3	4,前5,前 6 前7 前		
	自然科学	≠ ₄				Big Bigic JV Cinini CC D。		6,前7,前 10,前11,後 3,後4,後5				
		- ¹	1700年		电Xi	クーロンの法則が説明できる。		3	前1			
						クーロンの法則から、点電荷の間にはたらく静電気力を求めることができる。		3	前1			
評価割合					<u> </u>	103 0000				l	-	
							スト含む) 合計					
 総合評価割合							レポート (小テスト含む) 合計 30 100					
基礎的能力					1		0		0			
専門的能力					70 30		-	100				
分野横断的能力							0	0				
() 23 (AHIP)							1-		1 -			