茨城工業高等専門学校			開講年度	開講年度 令和05年度 (2023年度		授業科目	電気電子回路基礎	
科目基礎'	情報							
科目番号		0031			科目区分 専門/選択			
受業形態		講義			単位の種別と単位数 履修単位:		<u></u> ቷ: 2	
開設学科		国際創造	工学科 情報系	対象学年 3				
開設期		通年			週時間数	2		
教科書/教材	ł	教科書:	(前期)配布資料,	(後期)高橋 寛 閏	監修 「わかりやすい	℩電気基礎」(〓	1ロナ社)	
担当教員		関口 直修	関口直俊					
到達目標								
・点電荷の作・電流の作・電磁誘導・電界と電・・・・ブリッジ・	作る電界や るのは の は いの は いの は いの は の は り の に り の に り の に り の に り り の に り の り の	ウクーロンナ 技界中の電流の 理解し、その 選圧、ルーフ リ、ブナンの	に関する基礎的な記 に働く力を理解し、 説明や誘導起電力は の説明や電位に関す 合成抵抗を計算で表	その説明や基礎的に関する基礎的な計する基礎的な計算がまる。 である基礎的な計算がまる。 である。 である。 である。 である。 である。 である。 である。 であ	な計算ができる。 算ができる。 できる。			
ルーブリ		.,						
			理想的な到達レベルの目安		標準的な到達レベルの目安		未到達レベルの目安	
評価項目1			関する基礎的な	点電荷の作る電界やクーロンカに 関する基礎的な計算ができ、応用 的な計算が説明できる。		やクーロンカ(算ができる。	こ 点電荷の作る電界やクーロンカ(関する基礎的な計算ができない。	
評価項目2			電流の作る磁界や磁界中の電流に 働く力の説明や基礎的な計算、ま た応用的な計算の説明ができる。		電流の作る磁界や磁界中の電流に 働く力を理解し、その説明や基礎 的な計算ができる。		電流の作る磁界や磁界中の電流 働く力を理解できない。	
評価項目3			電界と電位の説明でき、様々諸量 の計算と応用ができる。		電界と電位の説明できる。		電界と電位の説明ができない。	
評価項目4			直流回路の電圧、電流、抵抗値を 各法則を用いて求めることができ る。		直流回路の電圧、電流、抵抗値を 求めることができる。		を 直流回路の電圧、電流、抵抗値 求めることができない。	
評価項目5			キルヒホッフ法則を用いて電圧、 電流の計算でき、応用できる。		キルヒホッフ法則を用いて電圧、 電流を計算できる。		キルヒホッフ法則を用いて電圧、電流の計算ができない。	
評価項目6			ブリッジ平衡条件を説明でき、未知の抵抗値を計算できる。		ブリッジ平衡条件を用いて未知の 抵抗値を計算できる。		D ブリッジ平衡条件が理解できない。	
評価項目7			重ねの理とテブナンの定理を説明 でき、回路の諸量の計算と応用が できる。		重ねの理とテブナンの定理を用い て回路の諸量の計算ができる。		・ 重ねの理とテブナンの定理を用いて回路の諸量の計算ができない。	
評価項目8			交流波形の諸量が計算でき、諸量 から交流波形を描ける。		交流波形の諸量を求めることがで きる。		で 交流波形の諸量を求めることが きない。	
学科の到			係					
学習・教育	到達度目標	₹ (A)						
教育方法	等							
概要		電気、	磁気に関する現象の	D理解を深めるとと:	もに、電気回路や電	電気計測等への	応用について学ぶ。	
座学形式とグループワークでの演習を組み合わせたスタイルで授業を進める。 授業の進め方・方法 後期の電気回路は,自ら問題を解く力をつけるため演習を中心に進める。授業の開始前に前回学んだ内容の確 を行う。					の開始前に前回学んだ内容の確認試験			
注意点			のではなく、常に でに完成させること		ぶ習慣を身につける	ること。予習や	復習を怠らず、課題が出された場合に	
授業の属	性・履修	上の区分	`					
□ アクティ	ィブラーニ	ング	□ ICT 利用		☑ 遠隔授業対応		□ 実務経験のある教員による技	
1= 11/= 1 ==								
授業計画		Ι.	F					
			授業内容 バンデグラフ起電板	受業内容 (ンデグラフ起電機と静電気		週ごとの到達目標 静電気(摩擦電気)、帯電現象、帯電体間に働		
		2週	クルックス管と陰極			(静電力)の性質を説明できる。 電荷およびクーロンの法則を説明でき、点電荷に働力を計算できる。		
		3週	 点電荷と電界		Ţ.	電界と電気力線を説明でき、点電荷による電界を計算できる。		
:	1stQ	4週	 電位		<u> </u>	電位、等電位面について説明できる。		

前期	1stQ	1週	バンデグラフ起電機と静電気	静電気(摩擦電気)、帯電現象、帯電体間に働く力 (静電力)の性質を説明できる。			
		2週	クルックス管と陰極線	電荷およびクーロンの法則を説明でき、点電荷に働く力を計算できる。			
		3週	点電荷と電界	電界と電気力線を説明でき、点電荷による電界を計算できる。			
		4週	電位	電位、等電位面について説明できる。			
		5週	クルックス管と偏向板	平等電界中での電位を計算できる。			
		6週	電界のする仕事	電界のする仕事について説明できる。			
		7週	模擬実験	今までの内容を復習する。			
		8週	クルックス管と磁界	ローレンツ力を説明できる。			
	2ndQ	9週	電流と磁界	ビオ・サバールの法則を説明でき、直線上導体・円形 コイルを流れる電流の作る磁界を説明できる。			
		10週	コイルと磁界	電流の流れるコイルに働く回転力(トルク)を説明でき、基礎的な計算ができる。			
		11週	クルックス管とコイル	円形コイルを流れる電流の作る磁界の計算ができる。			
		12週	直交電磁場中の荷電粒子の運動	直交電磁場中の荷電粒子の運動を説明できる。			
		13週	コイルと電磁誘導	レンツの法則と電磁誘導の法則を説明できる。			

		14週 電磁誘導と誘導起電力				誘導起電力に関する基礎的な計算ができる。				
		15週	(期末試験は実施	しない)						
		16週	総復習			これまでの総復	これまでの総復習			
	3rdQ	1週	直流電圧と電流			電子の流れと電流の関係、およびオームの法則などを 学ぶ				
		2週	直流回路の計算			直列接続、並列接続、直流回路の計算ができるように なる				
		3週				複数の起電力をとも に、抵抗の	複数の起電力を含む回路の計算ができるようになると とも に、抵抗の性質について説明できるようになる			
		4週	直流電流の作用			電流の3作用をきようになる	電流の3作用を学び、電力量や効率などの計算ができるようになる			
		5週					電流の化学作用を学んだ後、電池の種類、熱電現象が 説明 できるようになる			
		6週	直流回路のまとめ			問題を解き、直	問題を解き、直流回路の理解度を確認する。			
		7週	総合問題演習			定期試験を行わ	定期試験を行わず、総合問題演習を行う。			
後期		8週	交流の性質と発生			正弦波交流の性ぶ。	正弦波交流の性質、正弦波交流起電力の発生原理を学 ぶ。			
(安期	4thQ	9週	交流回路の計算			電圧	抵抗,静電容量およびインダクタンスに流れる電流と 電圧 の計算ができるようになる。			
		10週				交流電力の計算 並列 共振現象を	交流電力の計算ができるようになるとともに、直列・ 並列 共振現象を学ぶ。			
		11週	交流回路の複素数演算			複素数、複素数のベクトル表示および複素数の乗除と ベクトルの関係など、複素数の基本を学ぶ。				
		12週				交流の複素数表 法則 を学ぶ。	交流の複素数表示法、複素インピーダンス、オームの 法則 を学ぶ。			
		13週				記号法を用いた リッジ)の計算が	記号法を用いた交流回路(直列、並列、直並列、交流ブリッジ)の計算ができるようになる。			
		14週	交流回路のまとめ			問題を解き、交	問題を解き、交流回路の理解度を確認する。			
		15週	総合問題演習			定期試験を行わ	定期試験を行わず、総合問題演習を行う。			
		16週	総復習			これまでの総復	これまでの総復習			
評価割合	ì									
		ノポート	確認試験	相互評価	態度	ポートフォリス	オ その他	合計		
		50	50	0	0	0	0	100		
基礎的能力		50	50	0	0	0	0	100		
専門的能力)	0	0	0	0	0	0		
分野横断的能力)	0	0	0	0	0	0		