1週 非線形方程式の解法 方配 1週 非線形方程式の解法 1週 非線形方程式の解法 1次 3週 非線形方程式の解法 1次 4週 補間と最小二乗法 5週 補間と最小二乗法 5週 補間と最小二乗法 5週 補間と最小二乗法 6週 横間と最小二乗法 6週 関数の微分と積分 10週 関数の微分と積分 10週 関数の微分と積分 10週 常微分方程式の数値解法 1元 12週 常微分方程式の数値解法 2階 12週	授業科目	計算工学Ⅱ		
授業形態 授業 単位の種別と単位数 別象字年 開設期 後期 後期 後期 2 世 の	市田 / 22.4			
開設学科 電子情報工学科 対象学年 測時間 独利 2 字 子 2 字 子 3 字 2 字 3 字 3 字 3 字 3 字 3 字 3 字 3 字 3 字	専門/選排履修単位:			
開設期 後期	1	1		
教科書・等合智紀、Python教価計算プログラミング(講談社) 参考書籍:堀之内、酒井、榎園、Crcよる教価計算法入門第2版(森 担当教員 古山 ジー 到達目標 連立一次方程式の解法、行列の固有値・固有ベクトルの計算に必要なアルゴリズムの理解(G) みBEEの評価基準に達するには60点以上が必要 ルーブリック 埋想的な到達レベルの目安 標準的な到達レベル が活法を埋命と最小工乗法、微分方程式の 解法の理論を理解しい。それをコンドス・アルゴリズムの関係を理解した。これできまい。 常然の理論を理解した。これできまい。 常然の理論の実装 には160点以上が必要 アルゴリズムで解法を用いて に対して サークフログラムで表現できまい。 常然の理論の実践 には1970元と、その結果の変計 に必要な様々なアルゴリズムによってで解法を用いたが言ができる。 実際にコンピュータフログラムで表現できずいた解説を可能を理解したころでに議論で 対応を理論の実践 に対してきる。 実際にコンピュータフログラムで表現できまい。 実際にコンピュータフログラムで表現できまい。 実際にコンピュータフログラムで表現できまい。 実際にコンピュータフログラムで表現できまい。 実際にコンピュータフログラムで表現できまい。 実際にコンピュータフログラムで表現できまい。 実際にコンピュータでは、の地の情報と関係の事態を理解したころでで解説をでいたが表現できまい。 実際にコンピュータでは名数値計算は、自然科学、エ学、社会科学、その他の時間を理論の事態を理論に対して、対応について学部する(C3)。また、C 言語(C4)。 ファクラス ファクラス プロ では 利用 では 法に 定則は数を受験していることを条件に、配いの評価を集値本は本は数に準する。追認試験で単位修得が認められた者は 授業の属性・履修上の区分 ファクティブラーニング 図 ICT 利用 図 遠隔授業対応 フジーアクティブラーニング 図 ICT 利用 図 遠隔授業対応 フジーアクティブラーニング 図 ICT 利用 図 遠隔授業対応 フジーの アクティブラーニング 図 ICT 利用 図 遠隔授業対応 フジーの アクティブラーニング 図 ICT 利用 図 遠隔授業対応 フジーの アクティブラーニング 図 IDT 利用 図 遠隔授業対応 フジーの 関数の微分と積分 第値 間に最小で乗法 ラジー 間間と最小で乗法 ラジー 間間と最小で乗法 ラジー 間間と最小で乗法 ラジー 間間と最小で乗法 ラジー 間間と最小の関係法 第一般の分を積分 定す 間別のの微分と積分 第一個の 関数の微分と積分 定相 間にとよい 乗法 ラジー 12週 解数の分を積分 2階 間にとよい 東端 では 対域 が 対域	2			
到達目標 連立一次方程式の解法、行列の固有値・固有ペクトルの計算に必要なアルゴリズムの理解(c3) 3DABEEの評価基準に達するには60点以上が必要 ループリック 理想的な到達レベルの目安 標準的な到達レベルの開発と最初に対している。 理論を理解し説明できつつ、実際に計算もできる。 補間と最小工乗法、微分方程式の解析法の理論を理解し、それをコンピュータフログラムで表現でき計算でできる。 ・ 実際にコンピュータ上解法を用いた。 会別を理論の実装 に計算ができ、その結果の妥当 所法の理論の実装 に計算ができ、その結果の妥当 に対しまり数でき、その結果の妥当 に対しまり数でき、その結果の妥当 に対しまり数でき、その結果の妥当 に対しまり数でき、その結果の妥当 に対しまり数でき、その結果の妥当 に対しまりができ、その接来の妥当 に対しまりができ、その接来の要当 に対していて学習する(c3)。また、C言詞 (d)。 数学的な理論よりも具体的な計算方法に重点をおいて理解を深める。 数学的な理論よりも具体的な計算方法に重点をおいて理解を深めると (仮業外学習・事後) 投業内容に関する課題を解く (仮業外学部・事後) 投業内容に関する課題を解く (仮業外学部・事後) 投業内容に関する課題を解く (の点に満たない者は、定期試験を受験していることを条件に、願い出の議業の属性・履修上の区分 ロ IT 利用 図 遠隔投業対応 接 「2週 非線形方程式の解法	•			
到達目標 連立一次方程式の解法、行列の固有値・固有ペクトルの計算に必要なアルゴリズムの理解(c3) 3DABEEの評価基準に達するには60点以上が必要 ルーブリック 理想的な到達レベルの目安 標準的な到達レベルの開放 標準的な到達レベルの開放 標準的な到達レベルの開放 標準のな到達レベルの開放 標準のな到達レベルの開放 標準のな到達レベルの開放 標準のな到達レベルの開放 標準のな到達レベルの開放 標準のな到達レベルの開放 標法を用いて 原法基礎 に計算もできる。 解法の理論を理解し、それをコントニータフログラムで表現でき計算できる。 解法の理論の実装 一次計算ができ、その結果の妥当 性をおおよそ示すで 学科の到達目標項目との関係 教育方法等 できる。 アンビュータによる数値計算は、自然科学、工学、社会科学、その他の計算に必要な様々なアルゴリズムについて学習する(c3)。また、C言語 (d)。 数学的な理論よりも具体的な計算方法に重点をおいて理解を深める。 事前に行う準価学習:前回の講義の復習を行ってから授業に臨むこと (授業外学習・事後) 授業内容に関する課題を解く。 原本に流たないるよとを操行ってから授業に臨むこと (授業外学習・事後) 授業内容に関する課題を解く。 原本に流たないは、定期・出の評価基準は本試験に単する。 追認試験で単位修得が認められた者は 反評価基準は本試験に単する。 追認試験で単位修得が認められた者は 原則・非線形方程式の解法				
連立一次方程式の解法、行列の固有値・固有ペクトルの計算に必要なアルゴリズムの理解(c3)数値計算に必要なプログラミン技術の習得(d) ABEEの評価量準に達するには60点以上が必要 ルーブリック 理想的な到達レベルの目安 理論を理解し説明できつつ、実際 がた解法を用いて (定計算もできる。 解法の理論 解話の理論 と関係を理解し、それをコントで表現でき計算できる。 解法の理論 解説のアルゴリズム 解法の理論 を関係にコンピュータ上で解法を用 いた計算ができ、その結果の妥当 性をおおよそ示すこ 学科の到達目標項目との関係 教育方法等 概要 コンピュータによる数値計算は、自然科学、エ学、社会科学、その他の解 計算に必要な様々なアルゴリズムについて学習する(c3)。また、C言語 (d)。 数学的な理論よりも具体的な計算方法に重点をおいて理解を深める。 事情に行う準備・学習・関章内の内閣でに関する場合に関する場合 の評価基準は本試験に準する。追認試験で単位修得が認められた者は 授業の属性・履修上の区分 アクティブラーニング 区でも、 の評価基準は本試験に準する。追認試験で単位修得が認められた者は 授業の属性・履修上の区分 フクティブラーニング 図 ICT 利用 図 遠隔授業対応 接集計画 変 投験の微分と積分 8週 関数の微分と積分 8週 関数の微分と積分 8週 関数の微分と積分 8週 関数の微分と積分 8週 関数の微分と積分 2階 学説の動物を表する。 第個 第一次表示 第一次表示 第一次表示 第一次表示 第一次表示 第一次表示 第一次表示 第一次の解注 第一次表示 第一				
理想的な到達レベルの目安 標準的な到達レベルの目安 標準的な到達レベル解法基礎 理論を理解し脱明できつつ、実際 に計算もできる。 解法の理論 解法の理論 理解し、それをコンピュータブログラムで表現できず 質できる。 実際にコンピュータ がた 計算ができ、その結果の要等 保証を理論の実装 実際にコンピュータ上で解法を用いた。計算ができ、その結果の要等 実際にコンピュータ いた計算ができ、そ 性をおおよそ示す できる。 フレータフログラムで表現できず 算ができ、そ 性をおおよそ示す できる。 フレータフログラムで表現できず 実際にコンピュータ いた計算ができ、そ 性をおおよるで、	1			
補間と最小二乗法、微分方程式の		Transaction and		
解法基礎 に計算もできる。 解法の理論を理解し、それをコンドュータブログラムで表現でき計算できる。 解法の理論を理解し、それをコンドュータブログラムで表現でき計算できる。 実際にコンピュータ に新聞ができ、その結果の妥当性を理論を理解したうえて議論で 学科の到達目標項目との関係 教育方法等 コンピュータによる数値計算は、自然科学、工学、社会科学、その他の計算に必要な様々なアルゴリズムについて学習する(c3)。また。C言語(d)。 数学的な理論よりも具体的な計算方法に重点をおいて理解を深める・野前に行う準備学習:前回の講義の復習を行ってから授業に臨むこと(授業外学習・事後)授業内容に関する課題を解く。 明末試験(つゆ)、プログラミング演型とレボート(30%)で総合評価を60点に満たない者は、定期試験を受験していることを条件に、願い出の評価基準は本試験に準する。追認試験で単位修得が認められた者は「授業の属性・履修上の区分」 アクティブラーニング 図 ICT 利用 図 遠隔授業対応 授業計画 週 授業内容 過ご 清報形方程式の解法 5型 非線形方程式の解法 1週 非線形方程式の解法 1週 排線形方程式の解法 4週 補間と最小工乗法 5週 常微分方程式の数値解法 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		未到達レベルの目安		
開催と配う一条法、域分方程式の		学んだ解法を用いて計算を行う事 ができない。		
福間と最小二乗法、微分方程式の 性を理論を理解したうえで議論で 性を理論を理解したうえで議論で 性をおおよそ示すこ 性をおおよそ示すこ 性をおおよそ示すこ 性をおおよそ示すこ 学科の到達目標項目との関係 教育方法等 概要 コンピュータによる数値計算は、自然科学、工学、社会科学、その他の側計算に必要な様々なアルゴリズムについて学習する(c3)。また、C言語 類等的に行う準備学習:前回の講義の復習を行ってから授業に臨むこと (授業外学習・事後) 授業内容に演習を解く。 期末試験(70%)、プログラを製造していることを条件に、願い出 の評価基準は本試験に準する。追認試験で単位修得が認められた者は の評価基準は本試験に準する。追認試験で単位修得が認められた者は 授業の属性・履修上の区分 ロ ICT 利用 ロ 遠隔授業対応 授業計画 週 授業内容 週こ 遠隔授業対応	を理解できる	解法のアルゴリズムが理解できない。		
教育方法等 お育方法等	の結果の妥当	実際にコンピュータ上で解法を用いた計算はできるが結果の妥当性 は議論できない。		
教育方法等 お育方法等				
フンピュータによる数値計算は、自然科学、工学、社会科学、その他の側計算に必要な様々なアルゴリズムについて学習する(c3)。また、C言語(d)。 数学的な理論よりも具体的な計算方法に重点をおいて理解を深める。				
接業の進め方・方法 事前に行う準備学習:前回の講義の復習を行ってから授業に臨むこと (授業外学習・事後)授業内容に関する課題を解く。 期末試験(70%)、プログラミング演習とレボート(30%)で総合評価を 60点に満たない者は、定期試験を受験していることを条件に、願い出の評価基準は本試験に準ずる。追認試験で単位修得が認められた者は 授業の属性・履修上の区分 ② ICT 利用 ② 遠隔授業対応 ② 遠隔授業対応 ③ 遺ご 72週 非線形方程式の解法 52週 非線形方程式の解法 52週 非線形方程式の解法 738 3週 非線形方程式の解法 代表 53 3週 非線形方程式の解法 4週 補間と最小二乗法 福間と最小二乗法 50週 補間と最小二乗法 50週 補間と最小二乗法 50月 対の微分と積分 数が 80月 関数の微分と積分 数が 80月 関数の微分と積分 数が 50月 対立 50円 対立 50月 対立 50円 対立 50月 対立 5	晶広い分野で使 語による数値計	用されている。この科目では、数値 算プログラムの作成方法を習得する		
期末試験(70%)、プログラミング演習とレポート(30%)で総合評価を				
授業の属性・履修上の区分 □ アクティブラーニング □ ICT 利用 □ 遠隔授業対応 授業計画 □ 週 授業内容 □ 週ご 非線形方程式の解法 □ 方記 2週 非線形方程式の解法 □ 1次 3週 非線形方程式の解法 □ 1次 3週 非線形方程式の解法 □ 1次 4週 補間と最小二乗法 4週 補間と最小二乗法 5週 補間と最小二乗法 5辺 補間と最小二乗法 5以 10週 関数の微分と積分 10週 関数の微分と積分 □ 10週 常微分方程式の数値解法 11週 常微分方程式の数値解法 2階 12週 常微分方程式の数値解法 12週 常 12	そ行い、60点以 はにより追認試 、その評価を6	上の評価で単位を認定する。評価が 験を受けることができる。追認試験 50点とする。		
□ アクティブラーニング □ ICT 利用 □ 遠隔授業対応 授業計画 週				
週 授業内容 週 週 月報 月報 月報 月報 月報 月報		□ 実務経験のある教員による授業		
### 1週 非線形方程式の解法 75mm 75mm 75mm 75mm 75mm 75mm 75mm 75m				
3rdQ 非線形方程式の解法 n次 1週 非線形方程式の解法 代表 2週 非線形方程式の解法 代表 2週 補間と最小二乗法 5週 補間と最小二乗法 5辺 補間と最小二乗法 最小 7週 関数の微分と積分 数の微分と積分 10週 関数の微分と積分 10週 常微分方程式の数値解法 2週 常微分方程式の数値解法 2階 12週 常微分方程式の数値解法 2階 2階 12週 常微分方程式の数値解法 2階 2階 12週 常微分方程式の数値解法 2階 12週	週ごとの到達目標			
3個 非線形方程式の解法 n次 3週 非線形方程式の解法 代表 4週 補間と最小二乗法 海班 5週 補間と最小二乗法 ラグ 6週 補間と最小二乗法 最少 7週 関数の微分と積分 飲養 8週 関数の微分と積分 定積 9週 関数の微分と積分 ガウ 10週 常微分方程式の数値解法 高端 4thQ 常微分方程式の数値解法 2階	方程式の分類、縮小写像、1次元1変数方程式に対するニュートン法を理解する。			
3週 非線形方程式の解法 代表 として 相間と最小二乗法	n次元n変数方程式に対するニュートン法を理解する。			
3rdQ 特別 特別 毎月 5週 補間と最小工乗法 長月 6週 補間と最小工乗法 最月 7週 関数の微分と積分 数分 8週 関数の微分と積分 定利 10週 関数の微分と積分 ガウ 10週 常微分方程式の数値解法 差分 11週 常微分方程式の数値解法 グウ 4thQ 常微分方程式の数値解法 2階	代数方程式の解導出、コンパニオン行列の固有値問題として代数方程式を解く方法を理解する。			
6週 補間と最小二乗法 最少 7週 関数の微分と積分 微分動流 8週 関数の微分と積分 定租 9週 関数の微分と積分 ガウ 10週 常微分方程式の数値解法 常流 11週 常微分方程式の数値解法 差分 4thQ 常微分方程式の数値解法 2階	補間と最小二乗法、連立一次方程式によるn-1次補間 多項式の導出、を理解する。			
7週 関数の微分と積分 微分動物 の数分と積分 8週 関数の微分と積分 定和 できる。 9週 関数の微分と積分 ガヴ の の の の の の の の の の の の の の の の の の の	ラグランジュ補間、ニュートン補間、を理解する。			
10週 関数の微分と積分 定租	最小二乗法、自然な3時スプライン補間を理解する。 微分と差分商、高次の中央差分商による数値微分、自			
後期 9週 関数の微分と積分 ガウ 10週 常微分方程式の数値解法 常微 2 11週 常微分方程式の数値解法 2階 12週 常微分方程式の数値解法 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	動微分について理解する。 定積分を求めるSciPyのintegrateパッケージの使い方			
10週 常微分方程式の数値解法 常微分方程式の数値解法 11週 常微分方程式の数値解法 4thQ 常微分方程式の数値解法 2階	、ニュートン・コーツ型積分公式、を理解する。			
10週 常做分方程式の数値解法 る。 11週 常微分方程式の数値解法 クッググライン 4thQ 12週 常微分方程式の数値解法 2階	ガウス型積分公式、を理解する。			
11週 常微分方程式の数値解法 クッググ イングライス 12週 常微分方程式の数値解法 2階 12週 常微分方程式の数値解法 2階 12週 120	<u> </u>			
4thQ 12週 常微分方程式の数値解法 2階 偏微	差分からの導出(オイラー法、中点法、古典的ルンゲークッタ法)、一般のルンゲクッタ法、陽的・陰的ルンゲクッタ法の比較、を理解する。			
4thQ 偏微	2階線形常微分方程式の境界値問題、を理解する。			
	偏微分方程式の分類、差分法による偏微分方程式(波動方程式、熱伝導方程式)の数値解導出、を理解する			
	。 差分法による偏微分方程式(2次元ポアソン方程式)の 数値解導出、を理解する。			
15週 期末試験 期末	期末試験			
16週 期末試験の解答 試懸	試験返却			
モデルコアカリキュラムの学習内容と到達目標				
分類 分野 学習内容 学習内容の到達目標		到達レベル 授業週		

	1	1		1				$\overline{}$	
基礎的能力	工学基礎	情報リテラシー	情報リテラシー	与えられた基本的な問題を解くための適切なアルゴリズムを構築 することができる。				^築 4	後1,後2,後 3,後4,後 5,後6,後 7,後8,後 9,後10,後 11,後12
				任意のプログラミング言語を用いて、構築したアルゴリズムを実 装できる。					後1,後3,後 4,後5,後 6,後7,後8
専門的能力	分野別の専 門工学		プログラミング	代入や演算子の概念を理解し、式を記述できる。					後1,後5,後 6,後7,後8
		情報系分野		プロシージャ(または、関数、サブルーチンなど)の概念を理解し、これらを含むプログラムを記述できる。					後1,後2,後 5,後6,後 7,後8
				制御構造の概念を理解し、条件分岐を記述できる。					後1,後5,後 6,後7,後 8,後9,後 10,後11,後 12
				制御構造の概念を理解し、反復処理を記述できる。					後1,後3,後 5,後6,後 7,後8,後 9,後10,後 11,後12
				与えられた問題に対して、それを解決するためのソースプログラ ムを記述できる。					後1,後2,後 3,後4,後 5,後6,後 7,後8,後 9,後10,後 11,後12
				ソフトウェア生成に必要なツールを使い、ソースプログラムをロードモジュールに変換して実行できる。					後1,後3,後 4,後5,後 6,後7,後8
				要求仕様に従って、いずれかの手法により動作するプログラムを 設計することができる。					後1,後3,後 4,後5,後 6,後7,後8
				要求仕様に従って、いずれかの手法により動作するプログラムを実装することができる。				⁵ 4	後1,後3,後 4,後5,後 6,後7,後 8,後9,後 10,後11,後 12
				アルゴリズムの概念を説明できる。				4	後1,後2,後 3,後4
				与えられたアルゴリズムが問題を解決していく過程を説明できる。				·ි 3 4	後1,後3,後 4,後9,後 10,後11,後 12,後13,後 14
				同一の問題に対し、それを解決できる複数のアルゴリズムが存在					後1,後3,後
			ソフトウェ ア	しうることを説明できる。 整列、探索など、基本的なアルゴリズムについて説明できる。					後1,後3
				時間計算量によってアルゴリズムを比較・評価できることを説明 できる。				4 ⁵ 明 4	後4,後5,後 6,後7,後 8,後15,後 16
				領域計算量などによってアルゴリズムを比較・評価できることを 説明できる。				· * 4	後4,後5,後 6,後7,後 8,後15,後 16
				コンピュータ内部でデータを表現する方法(データ構造)にはバリエーションがあることを説明できる。				"リ ₄	後1,後2
				同一の問題に対し、選択したデータ構造によってアルゴリズムが 変化しうることを説明できる。				が 4	後1,後9
				リスト構造、スタック、キュー、木構造などの基本的なデータ構造の概念と操作を説明できる。				'構 4	後5,後6,後 7,後8
				リスト構造、スタック、キュー、木構造などの基本的なデータ構造を実装することができる。				'構 4	後5,後6,後 7,後8
				ソースプログラムを解析することにより、計算量等のさまざまな 観点から評価できる。				4	後3,後4,後 5,後6,後 7,後8,後 15,後16
				同じ問題を解決する複数のプログラムを計算量等の観点から比較できる。				ई 4	後3,後4,後 5,後6,後 7,後8,後 15,後16
評価割合		·	1						120/1220
	試験 発表 相互評価 態度 ポートフォリオ その他		<u> </u>	合計					
総合評価割合 70 30		0	0	0	0		100		
基礎的能力 35 0 0			0	0	0		35		
事門的能力 分野横断的能	35 Eカ 0	3		0	0	0	0		65 0