 松汀	 [工業高等	専門学校	開講年度 平成31年度 (2	 2019年度)	授業科目	基礎電気回路 1			
科目基础									
科目番号		0009		科目区分	科目区分 専門 / 選択				
授業形態		授業		単位の種別と単位					
開設学科		情報工学科	斗	対象学年	2				
開設期		前期		週時間数	2				
教科書/教	 対材	「入門 電		<u>.</u> 社					
旦当教員		渡部 徹							
到達目標	票								
(1) 抵抗 (2) 電気回	・インダクタ 回路の諸定理	アンス・キャル 関について説明 ろの方程式をご	《シタンスの特徴が説明できる. 月できる. ☆て,解くことができる.						
レーブ!	<u> </u>								
			理想的な到達レベルの目安	標準的な到達レベルの目安		未到達レベルの目安			
評価項目:	1		抵抗・インダクタンス・キャパシ タンスの特徴が説明できる	抵抗・インダクタンス・キャパミタンスの特徴が説明できる					
評価項目2			電気回路の諸定理について説明できる	電気回路の諸定理		きない			
評価項目3			基本的な電気回路の方程式を立て , 解くことができる	基本的な電気回路 , 解くことができ		基本的な電気回路の方程式を立て , 解くことができない			
	到達目標項 ^{育到達度目標}	頁目との関∙ 票 1	(糸						
教育方法	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	v ∓							
2年次の基 工学,情報 ・インダク			歴 歴 歴 歴 歴 歴 歴 歴 田 田						
受業の進む	め方・方法	1. 中間試 2. 小テス 3. 出席状	上記の到達目標(1)〜(3)の達成度を以 験および期末試験の成績=70%(各3 トとレポート提出状況=15% 況と学習態度=15% (100点満点)を合格とする.再評価	55%)					
注意点		復習:演	業の前に教科書を一読し,解らなかっ 受業で解らなかったところがあればそ。 習問題などなるべく多くの問題を解い 复習しておくこと.オフィスアワーを:	て計算練習をし,均	らくこと. 例題や 員や友達に質問し 理解を深める. 定	P章末問題を解いておくとなお良い. ルてその都度理解するよう努める. E期試験や小テストで解らなかった問			
授業計画	画	I.m. I.	ᄧᄴᅩᆉ	I,					
		1週	授業内容 講義ガイダンス 直流回路 原子と電子および電荷,電流と電流の ,電位,電位差,起電力,電源,負荷	大きさ、電圧	週ごとの到達目村				
		2週	, 一色は , こう , こ						
		3個	・・・ 直流回路 キルヒホッフの法則.						
	1stQ	42国	直流回路 キルヒホッフの法則.						
前期			直流回路 キルヒホッフの法則.						
			直流回路 電池の直並列接続.						
			直流回路 電池の直並列接続.						
			直流回路 テブナンの定理.						
			中間試験 第1回から第8回までの試験範囲の中間	引試験を行う.					
			テスト返却と前期中間のまとめ テスト返却.前期中間のまとめを行う						
	2ndQ		直流回路 テブナンの定理.						
		12週	直流回路 ノートンの定理.						
		1 2 注 目							
		1323	<u> </u>						
		14调	_{重ね合わらの年} 直流回路 ミルマンの定理.						
		14週	直流回路	末試験を行う.					
		14週	直流回路 ミルマンの定理. 期末試験	末試験を行う.					

分類		分野	学習内容	学習内容の到達目標			到達レベル	授業週	
専門的能力				電荷と電流、電圧を説明できる。			3		
		南ケ 南フ	電気回路	オームの法則を説明し、電流・電圧・抵抗の計算ができる。				3	
				キルヒホッフの法則を用いて、直流回路の計算ができる。				3	
		電気・電子 系分野		合成抵抗や分圧・分流の考え方を用いて、直流回路の計算ができる。			3		
	分野別の専 門工学			ブリッジ回路を計算し、平衡条件を求められる。			3		
				電力量と電力を説明し、これらを計算できる。			3		
		は 却 ズ 八田		オームの法則、キルヒホッフの法則を利用し、直流回路の計算を行うことができる。			3		
		情報系分野	」 習内容	トランジスタなど、ディジタルシステムで利用される半導体素子の基本的な特徴について説明できる。				3	
評価割合									
	試験		小テスト・レポ ート提出	相互評価	態度	ポートフォリオ	その他	合語	i†
総合評価割合	÷ 70		15	0	15	0	0	10	0
基礎的能力	0		0	0	0	0	0	0	
専門的能力	70		15	0	15	0	0	10	0
分野横断的能	约 0		0	0	0	0	0	0	