Anan College			Year	2024			Course Title	pplied Structural echanics
Course Information								
Course Code		5397C03			Course Category		Specialized／Elective	
Class Format		Lecture			Credits		Academic Credit： 2	
Department		Course of Electronics and Information Engineering			Student Grade		Adv．2nd	
Term		Second Semester			Classes per Week		後期：2	
Textbook and／or Teaching Materials		Sakimoto Tatsuro ：Kouzou Rikigaku［Dai 2 han \cdot Shinsouban］Ge－Fuseiteihen－（Morikita Shuppan）						
Instructor		Moriyama Takuro						
Course Objectives								
1．The deflection of beam and the displacement of truss can be calculated by using the energy method． 2．The reaction force of statically indeterminate beam with low degree of indeterminacy can be calculated． 3．The displacement of point and the force of member on truss can be calculated by using matrix structural analysis． 4．The method for calculating the deflection and the reaction force of beam by using matrix structural analysis can be understood．								
Rubric								
Ideal Level					Standard Level			Unacceptable Level
Achievement 1			The deflection of beam and the displacement of truss can be accurately calculated by using the energy method．		The deflection of beam and the displacement of truss can be almost calculated by using the energy method．			The overview of the method for calculating the deflection of beam and the displacement of truss by using the energy method can be understood．
Achievem	ent 2		The reaction force of statically indeterminate beam with low degree of indeterminacy can be accurately calculated．		The reaction force of statically indeterminate beam with low degree of indeterminacy can be almost calculated．			The overview of the method for calculating the reaction force of statically indeterminate beam with low degree of indeterminacy can be understood．
Achievem	ent 3		The displacement of point and the force of member on indeterminate truss can be accurately calculated by using matrix structural analysis．		The displacement of point and the force of member on static truss can be accurately calculated by using matrix structural analysis．			The overview of method for calculating the displacement of point and the force of member on static truss by using matrix structural analysis can be understood．
Achievem	ent 4		The method for calculating the deflection and the reaction force of beam by using matrix structural analysis can be accurately understood．		The method for calculating the deflection and the reaction force of beam by using matrix structural analysis can be almost understood．			The overview of method for calculating the deflection of beam and the reaction force on beam by using matrix structural analysis can be understood．
Assigned Department Objectives								
B－3 D－1								
Teaching Method								
Outline		The concept of structural mechanics，which considers the deformation of an object when a load is applied，is important in the design of any structure．In this lecture，the first half of this lecture explains the energy method and the static structure as an application of the mechanics of materials and structural mechanics of this course，and the second half explains the matrix structure analysis method．The goal of this course is to deepen the understanding of these applied concepts of structural mechanics．						
Style		In class，we will explain as many examples as possible for each content，and we will give them exercises as homework as a review．［ 30 hours of class time +60 hours of self－study time］						
Notice		In class，we will explain as many examples as possible for each content，and we will give them exercises as homework as a review．［ 30 hours of class time +60 hours of self－study time］						
Characteristics of Class／Division in Learning								
\square Active Learning			\square Aided by ICT		\square Applicable to Remote Class			Instructor Professionally Experienced
Course Plan								
			Theme				Goals	
2nd Semeste r	3rd Quarter	1st	Calculation of deflection on beam by using the energy method			Able to understand the concepts of work and strain energy，as well as solutions using the law of conservation of energy．		
		2nd	Calculation of deflection on beam by using the energy method			Able to understand the principles of virtual work．		
		3rd	Calculation of deflection on beam by using the energy method			Able to understand the unit load method．		
		4th	Calculation of deflection on beam by using the energy method			Able to understand Castigliano＇s theorem and reciprocity theorem．		
		5th	Solution of statically indeterminate structure			Able to understand the overview and simple solutions of statically indeterminate structures．		
		6th	Solution of statically indeterminate structure			Able to understand simple solutions of statically indeterminate structures．		
		7th	Solution of statically indeterminate structure			Able to understand the deflection angle method and the triple moments method．		
		8th	【Midterm examination】					

	4th Quarter	9th	Matrix structural analysis of truss			Able to construct the stiffness equation of static truss．		
		10th	Matrix structural analysis of truss			Able to solve the stiffness equation of static truss and to calculate unknown displacements and forces．		
		11th	Matrix structural analysis of truss			Able to solve the stiffness equation of static truss and to calculate the elongation and strain of members．		
		12th	Matrix structural analysis of truss			Able to construct stiffness equations of statically indeterminate trusses．		
		13th	Matrix structural analysis of truss			Able to solve the stiffness equation and to calculate unknown displacements and forces of statically indeterminate truss．		
		14th	Matrix structural analysis of beam			Able to construct the stiffness equation of beam．		
		15th	Matrix structural analysis of beam			Able to solve the stiffness equation of beam，and to calculate unknown displacements and forces．		
		16th	［Final examination】			【Final examination】		
Evaluation Method and Weight（\％）								
		Examination	Presentation	Mutual Evaluations between students	Behavior	Portfolio	Other	Total
Subtotal		80	0	0	0	20	0	100
Basic Proficiency		40	0	0	0	10	0	50
Specialized Proficiency		40	0	0	0	10	0	50
Cross Area Proficiency		0	0	0	0	0	0	0

