八戸工業高等専門学校					開講年度	.024年度)	024年度) 授業科目 二		エネルギ	エネルギー物理学 I (0232)			
科目基礎	情報						•						
科目番号 2E13						科目区分	一般 / 必修						
授業形態 講義							単位の種別と単位	,					
				テムエ		 G工学コース	対象学年	2					
					,冬学期(4th-	週時間数							
,						(Gakken)	310 Q12 101 Q12						
担当教員	<u> </u>	-	羽 隆裕										
到達目標													
到達日伝 (1) 万有引力の基本的な性質を理解し、簡単な現象を計算・説明することができる (2) 気体の分子運動とその熱的性質を理解し、簡単な現象を計算・説明することができる (3) 波動の基礎を理解し、光や音の現象をエネルギーの伝播として説明できる													
ルーブリック													
				理	想的な到達レ	ベルの目安	標準的な到達レイ	ベルの目]安	未到達レ	ベルの目安		
評価項目1 万有引力の基本的な性質の理解				万数	有引力の性質 式を用いて理解	を理解し、現象を 解することができ	2つの物体間の万有引力の計算ができ、ごく基本的な性質が説明できる			2つの物質ができ	2つの物体間に働く万有引力の計 算ができない		
評価項目2 気体の分子運動とその熱的性質の 理解				を を		とその熱的な性質 を数式を用いて理 きる				気体の分ことがで	分子運動から温度を求める できない		
評価項目3 波動の基礎の理解				解的	動によるエネルでき, 弦の振りな性質を定量に きる	波動の基本的な性質を理解し、基本的な問題を解くことができる		波動の基説明する	波動の基本的な性質を, 定性的に 説明することができない				
学科の到達目標項目との関係													
ディプロマポリシー DP2 © 地域志向 O													
教育方法	等												
波動や振動、熱など、「伝わる(伝搬する)」性質をもつ、複雑な物理現象を理解するための数学的な準備と定量的な 解釈ができることを目標とする。この講義では、これまで学んだカ学の概念を用いて万有引力を理解することを目指す ほか、物体の運動に関わる力学的エネルギーの一つとして熱エネルギーの基本について取り扱う。										と定量的な とを目指す			
万有引力の働いている状況における運動や力学的エネルギーを用いた気体分子体を演習問題を豊富に取り入れて理解す 授業の進め方・方法 ることを試みる。また、振動が伝搬していく波動についても学ぶ。到達度試験70%、課題・小テスト等30%として評価を行い、総合評価は100点満点として、60点以上を合格とする。													
「エネルギー物理学 I 」は、2年の春・夏学期に学んだ「カ学 II 」と3年の春・夏「エネルギー物理学 II 」を橋渡しする 重要な科目である。内容が連続しているので、「カ学 II 」の内容の理解が不十分であれば、知識を確固たるものとして おくこと。「カ学 II 」よりもさらに内容が抽象的になるため、演習量が学習内容の理解度に大きく寄与する。講義中の 演習量だけでは不十分であるため、復習と同時に自ら問題を解く姿勢が重要である。													
授業の属性・履修上の区分													
□ アクテ					ICT 利用		□ 遠隔授業対応	<u>-</u>		□ 実務総	経験のある教員	見による授業	
				l			,						
授業計画	i												
		週		授業四	 内容			週ごと	の到達目標				
		1週			<u></u> ラーの法則			ケプラ	一の法則を	理解できる)		
		2週			可引力			万有引力の法則を理解できる					
					 有引力による位置エネルギー			万有引力の働く状況での物体の運動を力学的エネルギ					
		3週						一に基づいて計算できる					
	3rdQ	4週			体の法則と分子運動			気体の法則と分子運動を理解できる					
		5週			体の内部エネルギー			気体の内部エネルギーを理解できる					
後期		6週			体の状態変化と比熱			気体の状態変化と比熱を理解できる					
		7週			l機関			熱機関を理解できる					
		8週			達度試験(答案返却とまとめ)								
		9週			D表し方			波の表し方を理解できる					
					の重ね合わせの原理			波の重ね合わせの原理を理解できる					
					皮の反射・屈折・回折			波の反射・屈折・回折を理解できる					
	4thQ				音の伝わり方			音の伝わり方を理解できる					
					ドップラー効果			ドップラー効果を理解できる					
					<u> 進み方</u> ボのまた		光の進み方を理解ができる						
					ブの実験	=+0 1+- 1 .1.	ヤングの実験を理解ができ			解かできる)		
		16ì		到達度試験(答案返却とまとめ)									
モデルコアカリキュ				字習						1			
分類			分野		学習内容	学習内容の到達目標			到達レベル	授業週			
					力学	万有引力の法則から物体間にはたらく万有引力を求めることができる。 			2	後1,後2			
			l			万有引力による位置エネルギーに関する計算ができる。			2	後3			
基礎的能力	自然科学	<u> </u>	物理			原子や分子の熱運動と絶対温度との関連について説明できる。			2	後4			
					熱	時間の推移とともに、熱の移動によってを説明できる。				2	後4		
						物体の熱容量と比熱を用いた計算ができる。			2	後6			

		熱量の保存則を表する。	す式を立て、熱容量や比熱を求める	ことができ	2	後6	
		ボイル・シャルルの法則や理想気体の状態方程式を用いて、気体の圧力、温度、体積に関する計算ができる。			2	後4	
		気体の内部エネルコ	デーについて説明できる。		2	後5	
		熱力学第一法則と知いて説明できる。	E積変化・定圧変化・等温変化・断	熱変化につ	2	後6	
		熱機関の熱効率に関する計算ができる。			2	後7	
		波の振幅、波長、周期、振動数、速さについて説明できる。			2	後9	
		横波と縦波の違いについて説明できる。			2	後9	
		波の重ね合わせの原理について説明できる。			2	後10	
		波の独立性について説明できる。			2	後10	
		2つの波が干渉するとき、互いに強めあう条件と弱めあう条件について計算できる。				後10	
		定常波の特徴(節、腹の振動のようすなど)を説明できる。			2	後10	
		ホイヘンスの原理について説明できる。			2	後11	
	波動	波の反射の法則、屈折の法則、および回折について説明できる。			2	後11	
		弦の長さと弦を伝わる波の速さから、弦の固有振動数を求めることができる。			2	後12	
		共振、共鳴現象について具体例を挙げることができる。			2	後12	
		ー直線上の運動において、ドップラー効果による音の振動数変化 を求めることができる。				後13	
		自然光と偏光の違いについて説明できる。			2	後14	
		光の反射角、屈折角に関する計算ができる。			2	後14	
		波長の違いによる分散現象によってスペクトルが生じることを説明できる。			2	後14	
評価割合							
	到達度試験		小テスト・課題等	合計			
総合評価割合	70		30 100				
基礎的能力	70		30 100				
専門的能力	0		0 0				
分野横断的能力	0		0 0				