	女工業高	等専門学校	開講年度 令利		.023年度)	授業科目	数学ⅡA(都市・環境系)			
————— 科目基礎		<u> </u>		, ,		,	THE PROPERTY OF			
科目番号	LIDTK	0048			科目区分	一般 / 必				
受業形態		授業			単位の種別と単位					
開設学科			 科(一般科目)		対象学年	2	1.54.5			
加政于14_ 開設期		通年	יור (יוגיורבו)		週時間数	4				
加取利 教科書/教	材	高遠節夫節夫他著	他著「新基礎数学 改訂」 「新基礎数学問題集 改 プリント	著「新基礎数学 改訂版」(大日本図書)、新新基礎数学問題集 改訂版」(大日本図書)、			一道他著「新微分積分 I 改訂版」(大日本図書)/高 ‡一道他著「新微分積分 I 問題集 改訂版」(大日本図書			
担当教員		木村 賢司								
2.関数の 3.いろい 4.関数の ができる。	の数と数列の極限、微 の極限、微 いろな関数の の変動とその	分係数、導関 の導関数(三 の応用(関数	の増減・極値、曲線の凹	理解して基本I 数関数、指数I 凸・変曲点、i	関数)について、そ 速度と加速度)につ	の内容を理解し いて、その内容	て基本的な問題を解くことがで を理解して基本的な問題を解く			
		分、置換積分	法、部分積分法について	、その内容を	理解して基本的な問	題を解くことが	できる。			
ルーブリ	<u> </u>									
			理想的な到達レベルの目安		標準的な到達レベルの目安		未到達レベルの目安			
評価項目1			「場合の数と数列」を 々な計算問題を解くこ	理解して色とができる	「場合の数と数列本的な計算問題を る。	」を理解して基 解くことができ	「場合の数と数列」を理解し 本的な計算問題を解くことが ない。			
評価項目2	2		「関数の極限、微分化」を理解して色々な記 くことができる。		「 関数の極限、微 」を理解して基本 解くことができる	的な計算問題を	「関数の極限、微分係数、導限」を理解して基本的な計算問題 解くことができない。			
評価項目 3			「いろいろな関数の対関数、逆三角関数、対数関数)」を理解して問題を解くことができ	数関数、指 色々な計算	「いろいろな関数 関数、逆三角関数 数関数)」を理解 算問題を解くこと	、対数関数、指 して基本的な計	「いろいろな関数の導関数 関数、逆三角関数、対数関数 数関数)」を理解して基本的 算問題を解くことができない			
評価項目4			「関数の変動とそのが 増減・極値、曲線の凹 、速度と加速度)」を 々な計算問題を解くこ	曲線の凹凸・変曲点 増減・極値、曲線の凹凸・変曲点 度)」を理解して色 、速度と加速度)」を理解して基			「関数の変動とその応用(関数 増減・極値、曲線の凹凸・変曲 、速度と加速度)」を理解して 本的な計算問題を解くことがで ない。			
評価項目 5			「定積分と不定積分、置換積分法 定積分と不定積分、置換積、部分積分法」を理解して色々な 部分積分法」を理解して割 計算問題を解くことができる。 計算問題を解くことができる			解して基本的な	「定積分と不定積分、置換積、部分積分法」を理解して基 な計算問題を解くことができ			
学科の至	達日標	項目との関	係							
Ⅰ 人間	性1Ⅰ.性2Ⅱ.	人間性 実践性 国際性	PI.							
教育方法	去等									
概要		1.場合 2.関数 3.い数 4.関数 5.定積	分は工学の基礎である。 の数、数列 の極限、微分係数、導関 いろな関数の導関数(三 の変動とその応用(関数 分と不定積分、置換積分	数 角関数、逆三角の増減・極値、 法、部分積分)	角関数、対数関数、 曲線の凹凸・変曲 去	指数関数) I点、速度と加速				
授業の進め	め方・方法		心に授業を進めるが、演るための達成度試験を適		する。基礎的計算力	・応用力の養成	を図るため課題を適宜課す。理			
注意点		・微葉授が、数でのでは、・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	は工学の基本であり、1 進み方は1年次よりも速 の内容はその日のうちに 学生諸君が今後学んでい 用力を養うこと。またす 締切を守って必ず提出す 績の成績が60点未満のも	年で学んだ数等 く、一旦つます 理解するよう。 く工学の基礎。 多くの問題を終 ること。	いかけること。 として位置づけられ 解くことによって理	る。継続的学習	る。 、日々の予習・復習の習慣を身 により数学の確固たる知識を習。 。 計合、再試験70%,課題等30%			
授業の属	属性・履何	修上の区分								
 □ アクテ	-ィブラーニ	ニング	☑ ICT 利用		☑ 遠隔授業対応		□ 実務経験のある教員によ			
授業計画	回									
·		週	授業内容			過ごとの到達目標				
1週			場合の数、順列		和	積の法則と和の法則を利用して、簡単な事象の場合 数を数えることができる。簡単な場合について、 の計算ができる。				
		2週	組合せ、いろいろな順列		1	節単な場合につい	て、組合せの計算ができる。円順 ものを含む順列の計算ができる。			
前期	1stQ	3週	二項定理、練習問題		二項定理を用いて多		多項式を展開できる。			
		4週	数列、等差数列			数列の定義が理解できる。等差数列の一般項やその利				
	-	5週	等比数列		を求めることがで					
						等比数列の一般頂やその和を求めることができる。				

5週

6週

等比数列

いろいろな数列

等比数列の一般項やその和を求めることができる。

総和記号を用いた簡単な数列の和を求めることができ る。

		7週	漸化	式と数学的帰	納法、練習問題、達成度試験	漸化式で表された数列の一般項を求めることができる 。数学的帰納法を用いた証明ができる。 達成度を把握し、試験の復習を行って理解度を向上す る。			
		8週	関数	とその性質、	関数の極限	簡単な場合について、関数の極限を求めることができ る。			
		9週	微分	係数、導関数	Į.	微分係数の意味や、導関数の定義を理解し、導関数を 求めることができる。			
		10週	導関	数の性質		積・商の導関数の公式を用いて、導関数を求めること がができる。			
		11週	三角	関数の導関数	Į.	三角関数の導関数を求めることができる。			
	2ndQ	12週		関数の導関数		指数関数の導関数を求めることができる。			
		13週	合成	関数の導関数	ス、対数関数の導関数	合成関数・対数関数の導関数を求めることができる。 逆三角関数を理解し、逆三角関数の導関数を求めるこ			
		14週		角関数とその		とができる。			
		15週 16週		の連続、練習 定期試験	問題	中間値の定理を利用して証明	することかて	ごきる。 	
		1週		上朔武殿 と法線		簡単な場合について、関数の接線の方程式を求めることができる。			
		2週				とができる。 関数の増減表を利用して、極値を求め、グラフの概形			
	3rdQ	3週	関数	の最大と最小	\	を描くことができる。 極値を利用して、関数の最大値・最小値を求めること			
		4週		形の極限、練		ができる。 ロピタルの定理を用いて極限値を求めることができる			
	3.22	5週	高次	 導関数		。 高次導関数を求めることができる。			
		6週		の凹凸、練習	門題	2次の導関数を利用して、グラフの凹凸を調べること			
		7週		変数表示と微		できる。 関数の媒介変数表示を理解し、媒介変数を利用して、			
		8週		と加速度		その導関数を求めることができる。 微分法を用いて速度・加速度を求めることができる。			
後期		9週			習問題、達成度試験	平均値の定理を理解できる。 達成度を把握し、試験の復習を行って理解度を向上する。			
		10週	不定	積分		不定積分の定義を理解し、簡単な不定積分を求めるこ とができる。			
		11週	定積	分の定義		定積分の定義を理解し、簡単な定積分を求めることが できる。			
	4thQ	12週	微分	積分法の基本	定理、定積分の計算	微積分の基本定理を理解でき ることができる。	*きる。簡単な定積分を求め 		
		13週	いろ	いろな不定積	分の公式、練習問題	不定積分の定義を理解し、簡単な不定積分を求めることができる。			
		14週	置換積分法			置換積分用いて、不定積分や定積分を求めることがで きる。			
		15週 部分和				部分置換積分用いて、不定積分や定積分を求めること			
		16週 後期定期				7. 6.6.00			
モデルコアカリキュラムの学習内容と到達目					達目標				
分類	1	分里	F	学習内容	学習内容の到達目標		到達レベル	授業週	
					積の法則と和の法則を利用して、簡単な事象の場合の数を数える ことができる。		3	前1	
					簡単な場合について、順列と組合せの計算ができる。		3	前1,前2	
					等差数列・等比数列の一般項やその和を求めることができる。 総和記号を用いた簡単な数列の和を求めることができる。		3	前4,前5	
					簡単な場合について、関数の極限を求めることができる。		3	前8,後4	
					微分係数の意味や、導関数の定義を	3	前9		
					ができる。 積・商の導関数の公式を用いて、導関数を求めることがができる。		3	前10	
					。 合成関数の導関数を求めることができる。		3	前13	
基礎的能力	」 数学	数学	<u> </u>	数学	三角関数・指数関数・対数関数の導関数を求めることができる。		3	前11,前 12,前13	
					逆三角関数を理解し、逆三角関数の導関数を求めることができる。		3	前14	
					関数の増減表を書いて、極値を求め、グラフの概形をかくことだってきる。		3	後2	
					極値を利用して、関数の最大値・最	3	後3		
					簡単な場合について、関数の接線の	3	後1		
					。 2次の導関数を利用して、グラフのD	3	後5,後6		
					関数の媒介変数表示を理解し、媒介を求めることができる。		後7		
					不定積分の定義を理解し、簡単な不定積分を求めることができる。		3	後10,後13	

			il c	置換とが	積分および部分積分を用いて できる。	、不定積分や定積分を求める。	3	後14,後15	
			\overline{\chi}{\chi}	定積分の定義と微積分の基本定理を理解し、簡単な定積分を求め ることができる。				後11,後12	
			3	分数関数・無理関数・三角関数・指数関数・対数関数の不定積分 ・定積分を求めることができる。				後13	
評価割合									
		定期試験			達成度試験	課題等	合計		
総合評価割合		35	35		35	30	100		
基礎的能力		35	35		35	30	100		
専門的能力		0	0		0	0	0		
分野横断的能力		0	0		0	0	0	·	