鹿児.	島工業高	等専門学	校 開講年度 令和06年	度 (2024年度)	授業科目	電気電子工学特別演習			
科目基础				•					
科目番号		7025		科目区分	専門/選抜	R			
受業形態		演習		単位の種別と単位	立数 学修単位:	1			
開設学科		電気情	報システム工学専攻	対象学年	専1				
用設期		前期		週時間数	前期:2				
数科書/教		1	が作成した講義用資料	ALI 9 BAN	13741.6				
旦当教員	ניויא	今村 成							
<u>23数页</u> 到達目標		713 /JX	H1						
題を十分(11 を 12 ・	に解けるレ 法, 枝電流 現象, 時定 ロンの法則 ・サバール	ベルまで応法, 重ねの 法, 重ねの 数の意味を , 電界と電	用力を高めていく、以下に具体的な理, テブナンの定理, ノートンの定理, ノートンの定理 理解し, 微分方程式の解法とラブラ位, ガウスの法則の概念を理解し,	3目標を示す. 主理などの回路網解析手 ラス変換を用いて、各種に 各種条件における静電	去を理解し,各種 回路の過渡現象に 気力,電界,電位	扱われる電気回路学,電磁気学の問回路の電圧,電流,電力を計算でき おける一般解を算出できる. ,静電容量,静電エネルギーを計算 界中の電流に働く力,ローレンツカ			
を計算でき 5. レン	さる. ツの法則, [*]	ファラデー	の電磁誘導の法則の概念を理解し,	起電力、インダクタンス	ス,磁界のエネル	ギーを計算できる.			
ルーブ!				- <i>'</i>	,				
<u>, , , , , , , , , , , , , , , , , , , </u>			理想的な到達レベルの目安	標準的な到達レヘ		未到達レベルの目安			
			各種回路網解析手法を用いて			本到達レイルの自女 回路網解析手法が理解できず,直			
評価項目1			流・交流各種回路の電圧,電 ,電力を計算できる.	流 を用いて,直流・ 電圧,電流,電力	交流各種回路の 」を計算できる.	流・交流各種回路の電圧,電流 ,電力を計算できない.			
評価項目2			過渡現象,時定数の意味を理,微分方程式の解法およびラス変換を用いて,各種回路の現象における一般解を算出で・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	プラ 1. 微分方程式の解	解法,ラブラス変 引いて,各種回路	過渡現象,時定数の意味が理解できず,微分方程式の解法,ラプラス変換のどちらかの方法を用いても,各種回路の過渡現象における一般解を算出できない.			
評価項目3			クーロンの法則,電界と電位 ウスの法則の概念を理解し, 条件における静電気力,電界 位,静電容量,静電エネルギ 計算できる.	各種 ウスの法則の概念 , 電 特定の条件におり 一を 界, 電位, 静電容 ギーを計算できる	念を理解し,ある ける静電気力,電 野量,静電エネル 5.	クーロンの法則,電界と電位, ガウスの法則の概念が理解できず,静電気力,電界,電位,静電容量,静電エネルギーを計算できない.			
評価項目4			ビオ・サバールの法則,アンの法則の概念を理解し,各種における磁界の強さ,磁束密, 磁界空, 磁界中の電流に働く力,ロンツカを計算できる.	条件 の法則の概念を理度 特定の条件におけ	ける磁界の強さ	ビオ・サバールの法則, アンペアの法則の概念を理解できず, 磁界の強さ, 磁束密度, 磁界中の電流に働く力, ローレンツカを計算できない.			
評価項目5			レンツの法則, ファラデーの 誘導の法則の概念を理解し, 条件における起電力, インダ ンス, 磁界のエネルギーを計 きる.	各種 誘導の法則の概念	を理解できず における起電力 、磁界のエネル	レンツの法則, ファラデーの電磁 誘導の法則の概念を理解できず , 起電力, インダクタンス, 磁界 のエネルギーを計算できない.			
<u></u> 学科の	到達目標」	頭目との		•					
学習・教 JABEE(2	育到達目標 2012) 基準 グラムの科	3-3 1(2)(d)(∶	1)						
教育方法		U 7 KK (T)	=						
既要	스 寸	する知	識を総結集し,復習あるいは新たた	学生が対象である. 本校駅 は学習により, 電気回路,	専攻科入学時まで(電磁気学の基本)	に履修した電気回路, 電磁気学に関 事項を確実に把握し, 応用問題を解			
受業の進	 め方・方法	講義内		きる実力を身につける。 よく理解するために,毎回,事前に渡された演習問題(宿題)は解いておき,授業時間での質問等に対応で					
 主意点			うにしておくこと. 了後は,復習として演習問題等の詞	理題に取組むこと 疑問。		都度質問すること			
	宝州,房/				ma walla, Con				
	属性・履(_ \+====w					
」	ティブラーニ	_ンク	□ ICT 利用	□□□ 遠隔授業対応		□ 実務経験のある教員による授			
受業計画	<u> </u>	1							
		週	授業内容		週ごとの到達目標	[
前期	1stQ	1週	直流回路, 対称回路	流回路, 対称回路		網目法,枝電流法,重ねの理,デブナンの定理,ノートンの定理を理解し,各種回路の回路電圧,回路電流,電力を計算できる. ブリッジ回路の平衡条件を理解し,未知の抵抗値などを計算できる.			
		2週	交流回路	路		正弦波交流,ベクトル記号法,インピーダンスとアトミタンス,交流電力,電力のベクトル表示,直列共振,並列共振,多相交流,多相交流の電力を理解し,各種回路の計算ができる.			
		3週	交流回路		正弦波交流,ベクトル記号法,インピーダンスとアトミタンス,交流電力,電力のベクトル表示,直列共振,並列共振,多相交流,多相交流の電力を理解し,各種回路の計算ができる.				
		4週	過渡現象	過渡現象		過渡現象,時定数の意味を理解し,微分方程式の解え とラプラス変換を用いて,各種回路の過渡現象においる一般解を算出できる.			

		_						
		5週	過渡現象		ートとラプラ	、時定数の意味を理解し、微分方程式の解法 ス変換を用いて、各種回路の過渡現象におけ を算出できる.		
		6週	真空中の静電界, 導体系	*	クーロン 極子, 静 理解し,	クーロンの法則,電界と電位,ガウスの法則,電気双極子,静電容量,静電エネルギーと静電気力の概念を理解し,各種条件における計算ができる.		
		7週	真空中の静電界, 導体系	K	極子, 静	クーロンの法則,電界と電位,ガウスの法則,電気双極子,静電容量,静電エネルギーと静電気力の概念を理解し,各種条件における計算ができる.		
		8週	真空中の静電界, 導体系	*	クーロン 極子, 静 理解し,	クーロンの法則,電界と電位,ガウスの法則,電気双極子,静電容量,静電エネルギーと静電気力の概念を理解し,各種条件における計算ができる.		
		9週	誘電体中の静電界		における 誘電体界 , 各種条 誘電体に	誘電分極, 誘電体中の電界について理解し, 各種条件における計算ができる. 誘電体界面での電界とと電束密度Dの境界条件を理解し, 各種条件における計算ができる. 誘電体に蓄えられるエネルギー, 誘電体境界面に働く力について各種条件における計算ができる.		
		10週	誘電体中の静電界		における 誘電体界 , 各種条 誘電体に	誘電分極, 誘電体中の電界について理解し, 各種条件における計算ができる. 誘電体界面での電界Eと電東密度Dの境界条件を理解し, 各種条件における計算ができる. 誘電体に蓄えられるエネルギー, 誘電体境界面に働く力について各種条件における計算ができる.		
					し,各種	がールの法則, アンペアの法則の概念を理解 条件における計算ができる. クトルポテンシャルの概念を用いて計算がで		
		11週	定常電流と磁界,磁性体		磁界中の て計算が 磁性体界 理解し,	電流に働く力,磁性体中の磁界の強さについ できる。 面での磁界の強さHと磁束密度Bの境界条件を 各種条件における計算ができる。 に回路の計算ができる。		
	2ndQ	12週	定常電流と磁界, 磁性体		し磁き磁子を が、から というでは というで というで というで というで というで というで というで というで	ビオ・サバールの法則, アンペアの法則の概念を理解し,各種条件における計算ができる. 磁位, ペクトルポテンシャルの概念を用いて計算ができる. 磁界中の電流に働く力, 磁性体中の磁界の強さについて計算ができる. 磁性体界面での磁界の強さHと磁束密度Bの境界条件を理解し,各種条件における計算ができる. 各種磁気回路の計算ができる.		
		13週	電磁誘導		レンツの 理解し, 変圧器起 における インダク	レンツの法則, ファラデーの電磁誘導の法則の概念を理解し, 各種条件における計算ができる. 変圧器起電力と速度起電力の概念を理解し, 各種条件における計算ができる. インダクタンス, 磁界のエネルギーについて各種条件における計算ができる.		
		14週	電磁誘導		レンツの 理解し, 変圧器起 における インダク	レンツの法則, ファラデーの電磁誘導の法則の概念を理解し, 各種条件における計算ができる. 変圧器起電力と速度起電力の概念を理解し, 各種条件における計算ができる. インダクタンス, 磁界のエネルギーについて各種条件における計算ができる.		
		15週	定期試験		これまで	これまでに学習した内容に対し達成度を確認する.		
			試験答案の返却・解説			試験において間違った部分を自分の課題として把握する(非評価項目).		
	アカリキ		D学習内容と到達目権					
分類		分野	学習内容 学習	3内容の到達目標		到達レベル 授業週		
評価割合		<u> </u>		I	1			
(4) A = T/T (T) A				レポート	その他	合計		
総合評価割		60 0		40	0	100		
基礎的能力				0	0	0		
専門的能力 分野横断的能力				40	0	100		
分野横断的能力 0 0 0								