旭川	工業高等	専門学校	開講年度	令和06年度 (2	2024年度)	授業科目	機器分析			
科目基礎	情報									
科目番号		078	078			専門 / 必				
授業形態 授業		授業			単位の種別と単位	数 学修単位	I: 2			
			工学科(2021年度)	以降入学者)	対象学年	4				
開設期		前期			週時間数	前期:4				
教科書/教	材		わかる機器分析(加]藤正直、内山一美	、鈴木秋弘共著、森	北出版) / 補助	1プリント			
担当教員		梅田 哲,	古崎 睦							
到達目標										
1. 代表的2. 与えら	りな機器分析 られた課題に	法について 対して実験	理解し、それらの原 指針を立案し、機器	理や装置構成、特 分析により得られ	徴や応用例等を説明 るデータを予測・訪	できる。 知できる。				
ルーブリ	プリック 理想的な到達レベルの目安 標準的な到達レベルの目安 未到達レベルの目安 代表的な機器分析法について理解 し、それらの原理や装置構成 特 代表的な機器分析法について理解 し、それらの原理や装置構成 特									
			理想的な到達レ	ベルの目安	標準的な到達レベ	ルの目安	未到達レベルの目安			
評価項目1			代表的な機器分類 し、それらの原理 徴や応用例等を通	所法について理解 理や装置構成、特 正しく説明できる	代表的な機器分析 し、それらの原理 徴や応用例等を説	や装置構成、特	代表的な機器分析法について、それらの原理や装置構成、特徴や応用例等を説明できない。			
評価項目2			験指針を立案し、	こ対して適切な実 . 機器分析により を正しく予測・説	与えられた課題に を立案し、機器分 るデータを予測・	析により得られ	与えられた課題に対して実験指針を立案できず、機器分析により得られるデータを予測・説明できない。			
学科の到	」達目標項	目との関	係				•			
			<u> 本科の教育目標①</u>							
教育方法										
概要										
	か方・方法						2人の教員が並行して授業を展開する			
注意点		・目字目 ・解法の	毎授業時に小テスト 較しながら、自己学 数90時間(自学自習 習(30時間)につい 時間および小テスト ついては,合計点数	ハては,日常の授業 、や定期試験の準備	で8、9種類の機器分析法を学習するので、各法の原理・特徴・応用例等が大切である。 (60時間)のための予習復習時間,理解を深めるための演習課題の考察 のための学習時間を総合したものとする. 近修得となる.					
授業の属	性・履修	上の区分								
	ィブラーニ		□ ICT 利用		□ 遠隔授業対応		□ 実務経験のある教員による授業			
			•				·			
授業計画	Ī									
		週	授業内容		Ŋ	過ごとの到達目	一			
	1stQ	1週	ガイダンス、序論		当步	学習内容や評価 類出する専門用	方法がわかり、また、機器分析分野で 語を正しく理解できる。			
前期		2週	(A) 吸光光度分析 (B) 赤外吸収分析	(1) (1)	(系が理解できる。	いて、波長・振動数・エネルギーの関			
		3週	(A) 吸光光度分析 (B) 赤外吸収分析	(2) (2)		D原理と特徴を	所法の特徴や、得られる情報などにつ			
		4週	(A) 吸光光度分析 (B) 赤外吸収分析	A) 吸光光度分析(3) B) 赤外吸収分析(3)			(A) 測定データを解析できる。 (B) 測定データを解析できる。			
		5週	(A) 原子吸光分析 (B) 核磁気共鳴分析		(? (A)原子吸光現象を理解でき、分析装置の構造や特徴を説明できる。 B)核磁気共鳴(NMR)の原理、装置、1H NMRスペクトルの各種測定法について説明できる。				
		6週	(A) 原子吸光分析 (B) 核磁気共鳴分析	A) 原子吸光分析(2) 3) 核磁気共鳴分析(2))測定データを解析できる。)核磁気共鳴(NMR)の原理、装置、1H NMRスペトルの各種測定法について説明できる。			
		7週	(A) ICP発光分析((B) 核磁気共鳴分析 次週、中間試験をす	1	(A) 原子発光現象を理解でき、分析装置の構造や特徴を説明できる。 (B) 1H スペクトルを解析できる。					
		8週	中間試験解説			・ んだ知識の再確認&修正ができる。				
			1 123020037031070		=	字んた知識の <u>申</u>	唯認&修正かできる。			
		9週	(A) ICP発光分析((B) 核磁気共鳴分析		(A) 測定データ? B) 13C NMRス きる。	を解析できる。 パクトルの各種測定法について説明で			
	2nd0	9週 10週	(A) ICP発光分析(1)	(A) 測定データを B) 13C NMRス きる。 A) X線の発生				
	2ndQ		(A) ICP発光分析((B) 核磁気共鳴分析 (A) 蛍光X線分析(1) T (5)		A) 測定データを B) 13C NMRス る。 A) X線の発生原 B) 13C NMRス る。 A) 蛍光X線分析 タを解析でき	を解析できる。 、ペクトルの各種測定法について説明で 原理と性質を理解できる。 、ペクトルの各種測定法について説明で 近の原理や装置構成等がわかり、測定デ			

	13:		周	(A) X線回折分析((B) クロマトグラフ		2) フィー (2)		(A) 測定データを解析できる。 (B) クロマトグラフィーの分類・基本原理・分離機構 がわかる。			
		14週 {		(A) 熱分析(1) (B) クロマトグラフィー(3)				(A) 熱重量分析・示差熱分析および示差走査熱量測定の原理や装置構成がわかる。 (B) 各種クロマトグラフィーの装置の構造について説明できる。			
			5週 (A) (B)		A) 熱分析(2) B) クロマトグラフィー(4)			(A) 測定データを解析できる。 (B) 測定データを解析できる。			
			週 期末		未試験			学んだ知識の確認ができる。			
モデルコアカリキュラムの学習内容と到達目標											
分類			分野		学習内容	学習内容の到達目標			到達レベル	/ 授業週	
専門的能力					分析化学 -	光吸収について理解し、代表的な分析方法について説明できる。				4	前2,前3,前 4,前5
				学・生物 分野		Lambert-Beerの法則に基づく計算をすることができる。				4	前3,前4
	分野別の					無機および有機物に関する代表的な構造分析、定性、定量分析法等を理解している。				4	前2,前3,前 4,前5,前 6,前8,前 9,前10,前 11,前12,前 13,前14
	門工学		糸分野			クロマトグラフィーの理論と代表的な分析方法を理解している。				4	前12,前 13,前14,前 15
						特定の分析装置を用いた気体、液体、固体の分析方法を理解し、測定例をもとにデータ解析することができる。				4	前2,前3,前 4,前5,前 6,前8,前 9,前10,前 11,前12,前 13,前14
評価割合											
試懸		大験 小		テスト・レポト					合	it	
総合評価割合		80		20		0	0	0	0	100	
基礎的能力		0		0		0	0	0	0	0	
専門的能力	80	80		20		0	0	0	0	100	
分野横断的	能力 0	0		0		0	0	0	0	0	