科目基礎 科目番号 授業形態 開設学科 開設期 教科書/教材 担当教員 到達目標 電気を学ぶ		0003 実験・実績	開講年度 令和03年度 (2021年段)	投耒	科目電	55回路 I			
科目番号 授業形態 開設学科 開設期 教科書/教科 担当教員 到達目標 電気をとを目		実験・実								
授業形態 開設学科 開設期 教科書/教科 担当教員 到達目標 電気を学ぶることを目	材	実験・実		T1000 "	I					
開設学科 開設期 教科書/教材 担当教員 到達目標 電気を学ぶることを目	材			科目区分		門 / 必修				
開設期 教科書/教材 担当教員 到達目標 電気を学ぶることを目	材			単位の種別と単	位数 履	修単位: 2				
教科書/教林 担当教員 到達目標 電気を学ぶ ることを目	材	機械・エス	ネルギーコース	対象学年	2					
担当教員 到達目標 電気を学ぶ ることを目	材	通年		週時間数	2	2				
到達目標 電気を学ぶ ることを目		電気基礎	コロナ社							
到達目標 電気を学ぶ ることを目		本郷 哲								
電気を学ぶることを目	<u> </u>									
ルーブロ	ぶ意義、直流	流回路、静電第 一部、演習(気、電流と磁気、交流回路について理 こより素子が扱えるようにする。	[解し、基本的な直	i流・交流回	回路の電圧	、電流、抵抗に関する計算ができ			
· · · ·	リック									
			理想的な到達レベルの目安	標準的な到達レ	ベルの目安	}	未到達レベルの目安			
電気回路の)基礎知識の	D習得	直流回路、電流と磁気、静電気、 交流回路の基礎理論を説明できる 。	直流回路、電流 交流回路の基礎 。			直流回路、電流と磁気、静電気、 交流回路の基礎理論がわからない 。			
電気回路の)基礎知識(D適用	直流回路、電流と磁気、静電気、 交流回路の基礎理論を用いた問題 を作成できる。	直流回路、電流と磁気、静電気、 交流回路の基礎理論の問題がとける。			直流回路、電流と磁気、静電気、 交流回路の基礎理論を用いること ができない。			
電気回路の 設計や作成		を用いた回路	直流回路、電流と磁気、静電気、 交流回路の基礎理論を用いて回路 の設計・制作ができる。	直流回路、電流と磁気、静電気、 交流回路の基礎理論のための回路 素子がわかる。			直流回路、電流と磁気、静電気、 交流回路の基礎理論を実践に使え ない。			
 学科の到	達日煙Ti	 1目との関 ⁴	1	1 /2 /2 /2 /2 /2						
	到達度目標 到達度目標 2 電気系		、電気工学、材料工学の分野にわたた や融合・複合システムの設計・分析	るエネルギーシスラ ・評価等の基盤技術	テムに関す [。] 桁を身に付け	る体系的なける	¢知識と技術を身に付ける			
教育方法	等									
概要		電気回路の	り」の基本素養を身につけるため、電気・電子工学の入門となる直流回路の基礎を学ぶ。電気を学ぶ意義、 構成、抵抗、コイル、コンデンサに流れる電流と電圧の関係について講義し、直列、並列、直並列回路など 流・交流回路の電圧、電流、抵抗に関する計算演習を行う。							
<事後学習> 授業で実施			を理解するため事前に教科書を読み、分からないところを明らかにしておくこと。							
	 属性・履修	授業で行 授業で行	う演習課題については、必ず提出する	3こと。						
	ィブラーニ		☑ ICT 利用	□ 遠隔授業対応	ប់		□ 実務経験のある教員による授業			
	ī									
以未可但	<u> </u>	週			週ごとの	训华口福				
	1stQ				<u> </u>	ラー ヘンマジロマナススト				
		H +	システムと電気				気について説明できること。			
			電圧と電流		電圧と電流の定義を説明できること。演習有り。					
		3週	オームの法則		オームの法則が説明できること。					
		H	直列回路、並列回路の計算		直列回路、	、並列回路	3の計算ができること。			
		5週 :	キルヒホッフの法則		キルヒホ	ッフの法則	則による計算ができること。			
		6週	ブリッジ回路		ブリッジ[回路と平衡	衡条件がわかること。			
		7週	列回路、並列回路、キルヒホッフの法則の簡易実験		実際に抵抗	抗値を読み	y、抵抗による回路を構成できるこ			
					Co					
24 .₩₽	-	8週	中間試験		1 1 1 2 2 1 2	中間時の到達度の確認				
<u></u> #₽			尊体の抵抗と電池		0	導体の抵抗が説明でき、抵抗率から抵抗を計算で 。				
前期			電力と電力量 、ジュール熱 電池			国力と電力量、ジュール熱が計算できること。 国池の原理と、様々な電池を理解できること。				
前期		~-	もに クーロンの法則		クーロンの法則を理解し、静電気力の計算ができる。					
前期		12调	/ ロノツルボ							
前期	2ndQ		東 男		電界について理解し、電界の大きさを計算できる。 コンデンサの原理を理解できること。					
前期	2ndQ	13週 1	電界		1		、電界の大きさを計算できる。			
前期 	2ndQ	13週 14週	コンデンサ		コンデン	サの原理を	、電界の大きさを計算できる。 理解できること。			
前期 	2ndQ	13週 14週 15週	コンデンサ コンデンサの回路		コンデン!	サの原理を サの直列、	、電界の大きさを計算できる。 理解できること。 並列回路の合成容量が計算できる			
前期	2ndQ	13週 14週 15週 16週	コンデンサ コンデンサの回路 総合演習		コンデン!	サの原理を サの直列、	、電界の大きさを計算できる。 理解できること。			
前期	2ndQ	13週 14週 15週 16週	コンデンサ コンデンサの回路		コンデン! コンデン! 。 総合演習(サの原理を サの直列、 と試験結果	、電界の大きさを計算できる。 理解できること。 並列回路の合成容量が計算できる			
前期	2ndQ	13週 14週 15週 16週 1週	コンデンサ コンデンサの回路 総合演習		コンデン! コンデン! 総合演習。 磁性に関 [*]	サの原理を サの直列、 と試験結果 する現象も	、電界の大きさを計算できる。 理解できること。 並列回路の合成容量が計算できる			
前期 後期	2ndQ 3rdQ	13週 14週 15週 16週 1週 2週	コンデンサ コンデンサの回路 総合演習 磁気の基礎		コンデン! コンデン! 総合演習。 磁性に関っ 直流電流の	サの原理を サの直列、 と試験結果 する現象よ の作る磁界	、電界の大きさを計算できる。 理解できること。 並列回路の合成容量が計算できる の振り返り。 なび基本法則を説明できること。			

				,				インダクタンスと	誘道記雷ナ	の関係が試	囲できること	
		5週		インタ	ダクタンス 	インダクタンスと誘導起電力の関係が説明でき 						
				後期中間試験			これまでの学習の					
		7週		正弦波交流			正弦波交流の基礎とその取扱いが説明できること。					
-		8週			安交流とベクト	〜 ル		正弦波交流をベクトルで表すことができること。			ること。	
		9週	交流[回路の計算		交流回路の計算ができること。					
		10浏	围 L	_CR[回路		LCRを並列に組み合わせた交流回路の計算ができること。					
	11: 14thQ 12: 13: 14: 15:				回路		共振回路について理解する。					
4			1 複素数		数表示によるインピーダンス計算 複			複素数を用いたイ	複素数を用いたインピーダンス計算方法を理解する			
			週 総合 週 総合			Webによる演習						
					(1)	直流回路、コンデンサに関す			る回路演習			
					超(2)	磁気に関する回路の演習 交流回路、LCR回路の演習						
		16i			超(3)			父流凹路、LCR凹i	路の演習			
	アカリー	두 그 ;		子舀	内容と到達					7D±1 -31	122 414 712	
分類			分野		学習内容	学習内容の到達目標				到達レベル		
						電荷と電流、電圧を説明できる。				3	前2,前8,後 14	
						オームの法則を説明し、電流・電圧・抵抗の計算ができる。				3	前3,前8,後 14	
						キルヒホッフの法則を用いて、直流回路の計算ができる。				3	前5,前7,前 8,後14	
専門的能力						合成抵抗や分圧・分流の考え方を用いて、直流回路の計算ができる。				3	前4,前7,前 8,後14	
						ブリッジ回路を計算し、平衡条件を求められる。				3	前6,前7,前 8,後14	
						電力量と電力を説明し、これらを計算できる。				3	前10,前 16,後14	
	分野別 <i>の</i> 専 門工学				電気回路	正弦波交流の特徴を説明し、周波数や位相などを計算できる。				3	後7,後8,後 16	
			電気・電子 系分野			平均値と実効値を説明し、これらを計算できる。				3	後7,後8,後 16	
						インピーダンスとアドミタンスを説明し、これらを計算できる。				3	後7,後8,後 16	
						キルヒホッフの法則を用いて、交流回路の計算ができる。				3	後9,後 10,後16	
						合成インピーダンスや分圧・分流の考え方を用いて、交流回路の 計算ができる。				3	後9,後 10,後12,後 16	
						直列共振回路と並列共振回路の計算ができる。				3	後11,後16	
						交流電力と力率を説明し、これらを計算できる。				2	後8,後9,後 10,後16	
						電荷及びクーロンの法則を説明でき、点電荷に働く力等を計算できる。				3	前12,前 16,後14	
						電界、電位、電気力線、電束を説明でき、これらを用いた計算が できる。				3	前13,前 16,後14	
						ガウスの法則を説明でき、電界の計算に用いることができる。				3	前13,後14	
						導体の性質を説明でき、導体表面の電荷密度や電界などを計算で きる。				3	前12,後14	
					電磁気	さる。 誘電体と分極及び電束密度を説明できる。				3	前13.後14	
						静電容量を説明でき、平行平板コンデンサ等の静電容量を計算できる。			量を計質で		前14,前	
									3	15,前16,後 14		
						磁性体と磁化及び磁束密度を説明できる。				3	後1,後2,後 6,後15	
						電磁誘導を説明でき、誘導起電力を計算できる。				3	後3,後4,後 6,後15	
	分野別の工 学実験・実 習能力		電気・電子 系分野【実 験・実習能 力】			電圧・電流・電力などの電気諸量の測定が実践できる。				2	前9,前 11,後6,後 13	
						抵抗・インピーダンスの測定が実践できる。				2	後12,後13	
						ブリッジ回路の平衡条件を適用し、実験結果を考察できる。			3	後13		
						重ねの理を適用し、実験結果を考察できる。				3	後13	
評価割合												
		レ	ポート	相互評価 態度 ポートフォリス		ポートフォリオ	その他	合計				
	総合評価割合 100		0			0	0	0	0			
基礎的能力	基礎的能力 80		0			0	0	0	0 80			
専門的能力	20)		0		0	0	0	0	20)	
分野横断的能力 0			0		0	0	0	0	0			