_ _	関工業高等	等専門学校	交 開講年度 令和06年度	(2024年度)	授業科目	有機分析化学				
科目基	礎情報									
科目番号	1	0001		科目区分	専門/選	択				
授業形態	ŧ	授業		単位の種別と単位	立数 学修単位	2				
開設学科	1		<u> </u>	対象学年	専1					
開設期		後期		週時間数	2					
教科書/勃	教材		: プリント : 新津隆士ほか 10年使える 有機ス	スペクトル解析 三共	出版					
担当教員	Į	岡本 健	E							
到達目	標									
2. 本科 3. 有機 ことがで	で学んだ有 実験反応(きる。	機化学実験 アルキル化	化学と分析技術の発展に密接な関係か 、機器分析の基礎知識を思い出しなか 反応、カップリング反応等)を行い、 別達目標】D-1	「ら、有機化学に特化」	した機器分析法を	ど学習し、それぞれ特徴を説明できる				
レーブ	リック									
			理想的な到達レベルの目安	標準的な到達レイ	ベルの目安	未到達レベルの目安				
有機化学	と分析技術	の発展	近代〜現代にかけて、有機化学の分析技術の発展に密接な関係があることを、観点の異なる年表が確認できる	5 <u> 近10~現10にかり</u>	こ密接な関係があ					
 各種有機	纷析機器		各種有機分析機器の原理と得意 する分析対象について何も見ず! 説明できる	こ する分析対象につしながら説明でき	ついて資料を参照					
分析手法	こと機器分析		有機実験反応(アルキル化反応、 カップリング反応等)を行い、 験ノートの作成、実験の実施、 離精製、定性、機器分析を安全 行うことができ、適切な表現で ポートにまとめることができる	実 何機夫級及心 () カップリング反応 験ノートの作成、	応等)を行い、実 実験の実施、分 幾器分析を安全に	・ 騒 ノートの作成 実験の実施 4				
	到達目標	10日との								
子科の 教育方		以口しの	치까							
授業の進 注意点	め方・方法	随時、 事過 等 選 業 評 課 課 課 課 課 課 課	される課題をやっておくこと 容を参考書、あるいはインターネット	経習を行う。 等で調べて予習してる 1回目の授業で告知る	する。					
授業の	属性・履	修上の区								
□ アク	ティブラー	ニング	☑ ICT 利用	□ 遠隔授業対応	,	□ 実務経験のある教員による技				
受業計	 画									
		週	授業内容		週ごとの到達目標					
後期		1週	有機化学と有機物利用の歴史 生物活性物質の研究史を例に		人類と有機化学の 有機化合物を挙げ	の歴史を学び、私たちの生活にひそ げ説明できる。				
		2週	有機物分析法 官能基と定性分析		定性分析に使われる試薬と、その反応式が書					
		3週	有機物分析法 分離分析法		各種分離分析の原 特徴を説明できる					
		4週	有機物分析法 電磁波分析法・概論		電磁波分析法の利	要がない。 対象の表が説明できる。				
	3rdQ	5週	有機物分析法 電磁波分析法 1		紫外可視吸収分析	ト可視吸収分析、赤外吸収の原理を理解し、実際 ペクトルを解析できる。				
		6週	有機物分析法 電磁波分析法 2		核磁気共鳴吸収分析の原理を理解し、実際のスペクリルを解析できる。					
		7週	有機物分析法質量分析と熱分析		質量分析法と熱分析の仕組みを学び、 どのように応用されているか説明できる。					
		8週	有機物化合物のスペクトル解析演習	51	核磁気共鳴、赤外吸収、質量分析のスペクトルを総的に解析し、化合物を同定できる。					
		9週	創薬現場でよく使われる反応		製薬会社の文献資料をもとに、どのような反応がよ用いられるか、読解できる。					
		10週			実験計画を立てられる。					
	4thQ	11週	クロスカップリング反応実験1		第10週の実験計画に基づき安全に実験を行うことが					
		12週			さる。 第11週で合成した化合物を精製できる					
	1	13個	クロスカップリング反応実験3		第11週で日成りた旧日初を相表できる					

第12週で合成した化合物を精製・分析できる

13週

クロスカップリング反応実験3

		14週	有機機器分析実習				第8週までに習った知識から、実験で合成した化合物を同定することができる。 分析機器から得られたデータをセキュリティに配慮しながらパソコンで解析できる。					
	15週 有機機器分析実習						第8週までに習った知識から、実験で合成した化合物を同定することができる。 分析機器から得られたデータをセキュリティに配慮しながらパソコンで解析できる。					
		16週	レポート作成と科目の総括									
モデルコアカリキュラムの学習内容と到達目標												
分類		分野		学習内容 学習内容の到達目標			到達レベル 授業週				授業週	
評価割合												
	課	題	L	ノポート	相互評価	態度	ポートフォリオ	その他		合計		
総合評価割合	会 80	80		.0	0	0	0	0		100		
基礎的能力	40	0 10		.0	0	0	0	0		50		
専門的能力	40	40		.0	0	0	0	0		50		
分野横断的能	能力 0	0)	0	0	0	0	·	0		