	 3工業高等	 F専門学校	開講年度 令和06年度 (2	2024年度)	授業科目	 流体力学 I	
		7. 11 1X				カルドナンフ・ユー エ	
科目番号	ALIDTK	0079		科目区分	専門 / 必修	7	
授業形態		講義		単位の種別と単位数	履修単位:		
開設学科		機械工学	·····································	対象学年	4	_	
開設期		通年	• •	週時間数	2		
教科書/教	材	教科書: 参考:JS , 2023)	[明解入門] 流体力学 第2版(森北出版 MEテキストシリーズ 流体力学第2版				
担当教員		今井 伸詰					
到達目標	<u> </u>						
① 流体(の性質 の静力学 の動力学 内の流れ	ハ理解するご	とを到達目標とする。				
_{岐阜高専}		ポリシー:	(D)				
ルーノリ	ノッソ		理相的か到達しべり。(<i>国</i>)	煙淮的が到達しが世	(良)		
	D.14.55		理想的な到達レベル(優) 標準的な到達レベル(良) 流体の性質に関する問題を8割以 流体の性質に関する問題を6			未到達レベル(不可) 流体の性質に関する問題を6割未	
① 流体(ツ性質 		上解くことができる.	上解くことができる.		満しか解くことができない.	
② 流体の静力学			流体の静力学に関する問題を8割 以上解くことができる.	流体の静力学に関する以上解くことができる	3.	流体の静力学に関する問題を6割 未満しか解くことができない.	
③ 流体(の動力学		流体の動力学に関する問題を8割以上解くことができる。	流体の動力学に関する以上解くことができる	3.	流体の動力学に関する問題を6割未満しか解くことができない.	
④ 管路区	内の流れ		管路内の流れに関する問題を8割以上解くことができる.	管路内の流れに関する 以上解くことができる	3.	管路内の流れに関する問題を6割 未満しか解くことができない.	
⑤ 抗力と揚力			抗力と揚力に関する問題を8割以 上解くことができる.	抗力と揚力に関する間 上解くことができる.	引題を6割以	抗力と揚力に関する問題を6割未満しか解くことができない.	
字科のst 教育方法		頁目との関	徐				
授業の進む	め方・方法	教科書/排 なお,理 (事前準	学習する内容が一部含まれているため 数材に示す専門書を踏まえて重要な箇所 論や定理に関連する証明,及び練習問 備の学習)数学全般(特にベクトルと 計画:Technical terms	fを板書,またはパワー 題は教室外学習で取り	·ポイント等の 組む.	資料を用いて説明する.	
注意点		の内容を よって, ・ 遅刻した 授業の内	が提示するモデルコアカリキュラム (充足していない. 岐阜高専の機械工学科では流体力学Iと 場合は授業を中断しても良いので遅れ 容を確実に身につけるために,予習・	ニ流体力学IIで機械工学	系の学生が身の		
授業の原	属性・履何	多上の区分	`	1		1	
□ アクテ	ティブラーニ	ニング	□ ICT 利用	□ 遠隔授業対応		□ 実務経験のある教員による授業	
授業計画	 面						
~~\\\	Ī	週	授業内容	调ご	 との到達目標		
前期		1週	流体力学入門 (ALのレベルC)		流体の定義と力学的な取り扱い方を理解し、適用でき		
	1stQ	2週	流体の性質を表す各種物理量 (ALのレベルC)	流体の性質を表す各種物理量の定義と単位を理解 , 適用できる.		各種物理量の定義と単位を理解し	
		3週	粘性流体の分類 (ALのレベルC)	= 7	ニュートンの粘性法則,ニュートン流体,非ニニン流体を説明できる.		
		4週	圧力の基礎 (ALのレベルC)	絶対	絶対圧力とゲージ圧力,およびパスカルの原理 できる.		
		5週	マノメータ (ALのレベルC)	解く	液柱計やマノメータを用いた圧力計測について問題を 解くことができる.		
		6週	面に作用する圧力 (ALのレベルC)	平面きる	平面や曲面に作用する全圧力および圧力中心を計算で きる.		
		7週	浮力 (ALのレベルC)	物体	物体に作用する浮力を計算できる.		
		8週	前期中間試験				
	2ndQ	9週	前期中間試験 流体の動力学の基礎 (ALのレベルC) 流線と流管	定常	流と非定常流	の違いを説明できる.	

12個		1			保存則と連続のレベルC)	連続の式を理解し,諸問題の流速と流量を記		計算できる		
1-30世 1-			12週	オイ	ラーの運動方	程式オイラ	一の運動方程式を説明	できる.		
14回			13週	エネ	<u>ルギー保存</u> 則	とベルヌーイの式 ベルヌ	ベルヌーイの式を理解し,流体の諸問題に適用できる			
15回			14週	運動				が物体に及ぼ	す力を計算	
1502			15週	前期	期末試験					
### 24			16週					いて説明でき	,物理量が	
24			1週					,粘性流れの特徴が説明で		
### 2015 (ALのレベルに)		3rdQ	2週				層流と乱流の違いを説明できる.			
##			3週	ダル: (AL	シー・ワイス のレベルC)	バッハの式 ダルシ 算でき	ダルシー・ワイスバッハの式を用いて管摩擦損失を計 算できる.			
1			4週			:公布		できる.		
20日			5週			イユ流れ	ン・ポアズイユ流れに	ついて説明で	きる.	
後期 2			6週			デク布 円管内乱流の速度分布が		 - 明できる.		
#### ################################			7週					撃擦係数を求めることがで 		
98世 外部流れの強いについて説明できる。	後期		8週							
### ### ### ### #####################			9週			内部流	内部流れと外部流れの違いについて説明できる.			
### (ALOU / ALOU / AL							抗力について理解し,抗力係数を用いて抗力を計算で きる.			
### (ALDU / VIC) 13週			11週							
14週		4thQ	12週				理想流体における円柱まわりの流れが説明できる.			
15週		·	13週				粘性流体における円柱まわりの流れが説明できる.			
16週 流体力学10末とめ 流体力学1で学習した内容について説明でき、物理量が 計算できる。					LのレベルC)		粘性流体の流れに関する演習問題に解答できる.			
日の世			15週	5週 後期期末試験		N= (4.1	W	- · ·=-	- Weimell	
###			16週	流体	力学Iのまと) 流体力字Iで字習した内容 計算できる.		ノい (説明 ぐる	*,物理重办	
 流体の定義と力学的な取り扱い方を理解し、適用できる。		アカリキ						I		
源体の性質を表す各種物理量の定義と単位を理解し、適用できる。 コュートンの粘性法則、ニュートン流体、非ニュートン流体を説 4 明できる。 総対圧力およびゲージ圧力を説明できる。 4 バスカルの原理を説明できる。 4 バスカルの原理を説明できる。 4 ア面や曲面に作用する全圧力および圧力中心を計算できる。 4 物体に作用する学力を計算できる。 4 物体に作用する学力を計算できる。 4 物体に作用するデカを説明できる。 4 東常流と非定常流の違いを説明できる。 4 オイラーの運動方程式を説明できる。 4 オイラーの運動方程式を説明できる。 4 アーク・変動方程式を説明できる。 4 アルヌーイの式を理解し、流体が物体に及ぼす力を計算できる。 4 アイノルズ数と臨界レイノルズ数を理解し、流れの状態に適用できる。 4 アイノルズ数と臨界レイノルズ数を理解し、流れの状態に適用できる。 5 がルシー・ワイスバッハの式を用いて管摩擦損失を計算できる。 4 ルーディー線図を用いて管摩擦損失を計算できる。 4 ルーディー線図を用いて管摩擦係数を求めることができる。 4 カードンのよりな説明できる。 4 カードンのよりな説明できる。 4 カードンのよりな説明できる。 4 カードンのよりな記録を読明できる。 4 カードンのよりな記録を求めることができる。 4 カードンのよりな記録を求めることができる。 4 カードンのよりな記録を求めることができる。 4 カードンのよりな記録を求めることができる。 4 カードンのよりな記録を求めることができる。 4 カードンのよりな記録を求めることができる。 4 カードンのよりな記録を示めることができる。 4 カードンのよりな記録を示めることができる。 4	分類		<u></u> 分	計	学習内容		第四本 まる			
カリア 機械系分野 機械系分野 機械系分野 機械系分野 機械系分野 機械系分野 機械系分野 機械系分野 内工学 機械系分野 機械系列 機械系分野 機械系分野 機械系分野 機械系分野 機械系分野 機械系分野 機械系分野 機械系分野 機械系列 機械系									日川工	
#PF的能力 #PF的能力 #PF的能力 #PF的能力 #PF的能力 ### 機械系分野 ### #### #### #### #### #### #### #### #### #### #### #### ##### ##### ##### ##### ######						ニュートンの粘性法則、ニュートン流体、非ニュートン流体を訪		'		
カ野別の専門工学 機械系分野 機械系分野 機械系分野 機械系分野 内丁文 機械系分野 内野別の専門工学 機械系分野 機械系分野 機械系分野 機械系分野 大丁文								•		
液柱計やマノメーターを用いた圧力計測について問題を解くこと 次柱計やマノメーターを用いた圧力計測について問題を解くこと ができる。 平面や曲面に作用する全圧力および圧力中心を計算できる。 4 次線と流管の定義を説明できる。 4 次線と流管の定義を説明できる。 4 連続の式を理解し、諸問題の流速と流量を計算できる。 4 本オーラーの運動方程式を説明できる。 4 本オーラーの運動方程式を説明できる。 4 本オーラーの運動方程式を説明できる。 4 本オーラーの運動方程式を説明できる。 4 本オーラーの運動方程式を説明できる。 4 本オーラーの運動が発出を理解し、流体の諸問題に適用できる。 4 本オーラーの運動が発出を理解し、流体が物体に及ぼす力を計算できる。 4 本オーラーの運動が発出を理解し、流体が物体に及ぼす力を計算できる。 4 本オーラーの運動が発出を理解し、流体が物体に及ぼす力を計算できる。 4 本オーラーの運動が発出を理解し、流れの状態に適用できる。 4 本オーラーの運動が発出を理解し、流れの状態に適用できる。 4 本オーラーの運動が発出を理解し、流れの状態に適用できる。 4 本オーラー・ワイスバッハの式を用いて管摩擦損失を計算できる。 4 本オーラー・ロイスバッハの式を用いて管摩擦損失を計算できる。 4 本オーク・ロイスバッハの式を用いて管摩擦損失を計算できる。 4 本オーク・ロイスバッハの式を用いて管摩擦損失を計算できる。 4 本オーク・ロイスバッハの式を用いて管摩擦損失を計算できる。 4 本オーク・ロイスバットの状態に適用できる。 4 本オーク・ロイスバットの対象を説明できる。 4 本オーク・ロイスバットの対象を説明できる。 4 本オーク・ロイスバットの対象を説明できる。 4 本オーク・ロイスバットの対象を説明できる。 4 本オーク・ロイスバットの対象を説明できる。 4 本オーク・ロイスバットの運動が表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表										
中国の能力 分野別の専門工学 機械系分野 熱流体 熱流体 熱流体 整流体 整流体 整流体 整流体 整流体 整流体 整流体 整流体 整流体 整										
物体に作用する浮力を計算できる。										
東門的能力										
専門的能力										
連続の式を理解し、諸問題の流速と流量を計算できる。		ム殿叫の声						4		
ベルヌーイの式を理解し、流体の諸問題に適用できる。 4 運動量の法則を理解し、流体が物体に及ぼす力を計算できる。 4 層流と乱流の違いを説明できる。 4 レイノルズ数と臨界レイノルズ数を理解し、流れの状態に適用できる。 4 クルシー・ワイスバッハの式を用いて管摩擦損失を計算できる。 4 ムーディー線図を用いて管摩擦係数を求めることができる。 4 境界層、はく離、後流など、流れの中に置かれた物体の周りで生じる現象を説明できる。 4 抗力について理解し、抗力係数を用いて抗力を計算できる。 4 揚力について理解し、揚力係数を用いて揚力を計算できる。 4 揚力について理解し、揚力係数を用いて揚力を計算できる。 4	専門的能力	門工学	ノ寺 機	繊系分野	熱流体			4		
運動量の法則を理解し、流体が物体に及ぼす力を計算できる。 4 層流と乱流の違いを説明できる。 4 レイノルズ数と臨界レイノルズ数を理解し、流れの状態に適用で 4 きる。 ダルシー・ワイスバッハの式を用いて管摩擦損失を計算できる。 4 ムーディー線図を用いて管摩擦係数を求めることができる。 4 境界層、はく離、後流など、流れの中に置かれた物体の周りで生 じる現象を説明できる。 抗力について理解し、抗力係数を用いて抗力を計算できる。 4 揚力について理解し、揚力係数を用いて揚力を計算できる。 4 湯力について理解し、場力係数を用いて揚力を計算できる。 4					オイラーの運動方程式を説明できる。			4		
層流と乱流の違いを説明できる。 レイノルズ数と臨界レイノルズ数を理解し、流れの状態に適用できる。 ダルシー・ワイスバッハの式を用いて管摩擦損失を計算できる。 4 ムーディー線図を用いて管摩擦係数を求めることができる。 境界層、はく離、後流など、流れの中に置かれた物体の周りで生じる現象を説明できる。 抗力について理解し、抗力係数を用いて抗力を計算できる。 揚力について理解し、揚力係数を用いて揚力を計算できる。 場別について理解し、場力係数を用いて揚力を計算できる。 場別について理解し、場力係数を用いて揚力を計算できる。								4		
レイノルズ数と臨界レイノルズ数を理解し、流れの状態に適用で 4						運動量の法則を理解し、流体が物体に及ぼす力を計算できる。		4		
きる。 ダルシー・ワイスバッハの式を用いて管摩擦損失を計算できる。 4 ムーディー線図を用いて管摩擦係数を求めることができる。 4 境界層、はく離、後流など、流れの中に置かれた物体の周りで生しる現象を説明できる。 抗力について理解し、抗力係数を用いて抗力を計算できる。 4 揚カについて理解し、揚力係数を用いて揚力を計算できる。 4						層流と乱流の違いを説明できる。		4		
ムーディー線図を用いて管摩擦係数を求めることができる。 4 境界層、はく離、後流など、流れの中に置かれた物体の周りで生じる現象を説明できる。 4 抗力について理解し、抗力係数を用いて抗力を計算できる。 4 揚力について理解し、揚力係数を用いて揚力を計算できる。 4 評価割合 4								4		
境界層、はく離、後流など、流れの中に置かれた物体の周りで生 じる現象を説明できる。 抗力について理解し、抗力係数を用いて抗力を計算できる。 揚力について理解し、揚力係数を用いて揚力を計算できる。 4						ダルシー・ワイスバッハの式を用いて管摩擦損失を計算できる。		4		
じる現象を説明できる。								4		
揚力について理解し、揚力係数を用いて揚力を計算できる。 4 評価割合								4		
評価割合								4		
						揚力について理解し、揚力係数を用いて揚力	カを計算できる。	4		
	評価割合	ì	_							
				試	験	課題	合計			

総合評価割合	80	20	100
得点	80	20	100