科目日の	阿南	工業高等	専門学校	開講年度	令和06年度 /	106年度 (2024年度)		機械要素設計				
特目に対 特目に対 特目に対 特目に対 サールを保護と呼ば 特別に対			<u>VI. [[[15]</u>	Z/ - E 4001	ן אַרידיסטמוינון (2021—12)		NA IN SACIONAL I				
野悪 特別		上1月羊以	121200	1		利日区公	击胆 / >	从 修				
開発学科 機械コース 対象学集 3 1 1 1 1 1 1 1 1 1				1								
								I				
製料型が終す 機械要素設計(日本理工出版会)/機械要素設計(実業出版) 型連目標 1. 動力と関係認度から回転場所の伝達トルクを計算できる。また、機の曲が応力、ねじり応力が計算できる。 3. 組織の高されができないフィスから、ねしの輪力が計算できる。 3. 組織の高されができないフィスから、ねしの輪力が計算できる。 3. 組織の高されができないフィスから、ねしの輪力が計算できる。 3. 組織の高されができないフィスから、ねしの輪力が計算できる。 4. コイルはむの構元を求める設計計型ができる。 ループリック 埋理的な到達レベルの日女 機体のな到達レベルの日女 別がたり間で調整の伝達 カールクを計算できる。 3. は、加げの方を計算できる。 カールの音が作りない。 また、軸の かった は、から、ねしの地の対計算できる。				· 🗡			-					
担当数性					へ、/		佐期:2					
1. 動しに関係でありらいます。		材	_	•	会)/機械要系設計(美教出版)						
1. 動力と同語速度から阿藤利の原語トルクを計算できる。また、軸の曲があか、ねじり応力が計算できる。 2. ねにに加りるトルクとはサイスから、私じの軸方計算できる。 3. 執機の希前計算ができる。 ループリック 理想的な対きレベルの目安 標準的な対きレベルの目安 の要勢力から軸に加りるトルクを計算した。などり応力を計算できる。自然の力を計算できる。自然の力を計算できる。自然の力を計算できる。また、曲がらからを計算できる。また、曲がらからを計算できる。また、曲がらからを計算できる。また、歯がらからを計算できる。また、歯がらからを計算できる。また、歯がらからを計算できる。また、歯がらからを計算できる。などの計算とはした作用する可能の 自然の力を計算できる。また、歯がらからを計算できる。また、歯がらからを計算できる。また、歯がらからを計算できる。また、歯がらからを計算できる。また、歯がらからを計算できる。また、歯がらからを計算できる。また、歯がらからを計算できる。また。歯がらからを計算できる。また。歯がらからを計算できる。また。歯がらからを計算できる。また。歯がらからを持ずできる。カンシアル海中のに対象が対すできる。自然の力が対計算できる。カンシアル海中の自然の場所が対け算できる。カンシアル海中の自然の場所が対け算できる。カンシル海中の自然を参加する自然の場所を利望する自然に加え、軸、など、歯患、はななど多様多様な様様度素のできる。イルはなの最大的ができる。イルはなの最大的が対する自然に対象が対する自然に対象が対する自然に対象が対する自然に対象が対する自然に対象が対する自然に対象が対する自然に対象が対象が対象が対象が対象が対象が対象が対象が対象が対象が対象が対象が対象が対				專								
2. 私に化加りるトルクとなじサイズから、おじの軸がが計算できる。 4. コイルは200番元を求める認計背質ができる。 4. コイルは200番元を求める認計背質ができる。 4. コイルは200番元を求める認計背質ができる。 2. 必要数カから軸に加りるトルクを 前上、日間表現を含る。また、軸の 間上し、私しりが入れら打ち合質できる。また、軸の 間があり、ねじりが力が計算できる。また、軸の 間がした ねじりがたが育また。	到達目標	₹										
理想的な到達レベルの目安 概率的な到達レベルの目安 初き回路域から回転軸の伝達 計算し、和といりの方針できる。 また、曲が応力を計算できる。 また 自動に作用する制度の対理できる。 カンデルの書からの書からの書からの書からの書からの書からの書からの書からの書からの書から	2. ねじに 3. 軸受の 4. コイル	こ加わるトル D寿命計算が レばねの諸を	レクとねじち バできる。	ナイズから、ねじの軸	ごきる。また、軸 <i>の</i> 曲力が計算できる。)曲げ応力、ねじり応	S力が計算できる 	3.				
対策自標1	ルーフリ	リック		理想的な到達し	 ベルの目安	標準的な到達しべ		最低限の到達しべルの日安(可)				
20	到達目標1			必要動力から軸(計算し、ねじり)	に加わるトルクを 応力を計算できる	動力と回転速度か トルクを計算でき 曲げ応力、ねじり	ら回転軸の伝道 る。また、軸の	例題と同様の状況下において、動力と回転速度から回転軸の伝達トルクを計算できる。また、軸の曲				
から、ねじの軸が計算できる。	TU + C # 0			ねじの軸力を得る。	るための必要トル			。 例題と同様の状況下において、ね				
製達目標3	到達目標2 			力を計算できる。	>	から、ねじの軸力	が計算できる。	ら、ねじの軸力が計算できる。				
注算日標項目との関係	,到達目標3 	!		適用軸径から軸	受の選定ができる	同時に作用する軸できる。	受の寿命計算か	が				
 				活用して、ばねの 計算することが	活用して、ばねの諸元を効率的に		的な設計ができ	例題と同様の状況下において、コイルばねの設計ができる。				
数育方法等 概要	学科の至	J達目標I	目との関	係								
概要 機械製品を構成するためには、設計者が設計する部品に加え、触、なじ、歯車、はねなど多種多様な機械要素のが必要へ可欠である。したがって、機械要素なくして機械製品の設計、製作、組立は実施できない。 接続では機械要素の利用を考えた設計を行う上で基礎となる軸、ねし、歯車、はねなど多種多様な機械要素の別用を考えた設計を行う上で基礎となる軸、ねし、歯車、はねなど多種多様な機械要素の別用を考えた設計を行う上で表でよる軸、ねし、歯車、はなるとのできる能力を備えることをは異薬情間30時間30時間30時間30時間30時間30時間30時間30時間30時間30時	学習・教育	到達度目標	票 D-1									
が必要不可欠である。したがって、機械要素なくして機械製品の設計、製作、組立は実施できない。 本講義では機械要素の利用を考えた設計を行う上で基礎となる軸、ねじ 軸受け、ほねおよび管に作用する力と応計算や、軸受寿命の計算を学ぶ。そして、各種機械要素の設計計算を適切に行うことができる能力を備えることをして要素の属性・履修上の区分	教育方法	<u> </u>										
接案の進め方・方法 計算件と呼吸を上の区分	概要		が必要不	可欠である。したか	欠である。したがって、機械要素なくして機械製品の設計、製作、組立は実施できない。							
注意点 各回、機械要素に対しての講義を終えた時点で、設計計算演習を実施する。日頃からしっかり予習、復習をするこ 授業の属性・履修上の区分 □ アクティブラーニング □ ICT 利用 □ 図 遠隔授業対応 □ 実務経験のある教員によっ 授業計画 □ 週 授業内容 □ 週ごとの到達目標 □ 動力とトルクの関係が説明でき、動力と回転数と クの関係が説明でき、動力と回転数と クの関係が説明できる。 おしり応力と極断面係数、トルクの関係が説明できる。 おしり応力と極断面係数、トルクの関係が説明できる。 はじりを受ける軸 塩 はりを受ける軸 塩 はりを受ける軸の直径を設計できる。 相当ねじりモーメントと相当曲げモーメントの関係明でき、曲げとねじりが同時に作用する細の設できる。 ねじり応力と起いのが同時に作用する細の設できる。 ねじり応力とねじりが同時に作用する細の設できる。 ねじり応力とねじりが同時に作用する場の設けできる。 ねじり応力とねじりが同時に作用する場の設けできる。 ねじり応力とねじりが同時に作用するがの時後を説明でき、曲がとねじりが同時に作用するねじのを受ける神がから必要なねじを設計できる。 はしいかかると要なおじを設計できる。 はしいがわりが、おしいの種類と特徴を説明できる。 もものでもと義けできる。 もものでもと義けできる。 もものでは、おしいの種類と特徴を説明できる。 もものでは、おしいの表さを設計できる。 もものでは、おしいの表さを説明できる。 もものでは、おしいの表さを説明できる。 もものでは、おしいの表さを説明できる。 もものでは、おしいの表さを説明できる。 もまりの事では、おしいの表さを説明できる。 もまりの事では、おしいの表さな説明できる。 もまりの事では、おしいの表さな説明できる。 もまりの事では、おしいの表さは、まりの事にを説明できる。 もまりの事では、おしいの表さな説明できる。 もまりの事では、おしいの表は、まりの意味を説明できる。 もまりの事では、おしいの表は、まりの意味を説明できる。 もまりの事では、まりの意味を説明できる。 もまりの事では、まりのもの。まりの事では、まりの事では、まりの事では、まりのものものをは、まりのもの。まりのものものものものをは、まりのものものものものものものものものものものものものものものものものものものも	授業の進め	か方・方法	計算や、 とする。	軸受寿命の計算を学 授業で	受寿命の計算を学ぶ。そして、各種機械要素の設計計算を適切に行うことができる能力を備えることを 業で							
授業の属性・履修上の区分 □ アクティブラーニング □ ICT 利用 □ 遠隔授業対応 □ 実務経験のある教員による 授業計画 週 授業内容 週ごとの到達目標 動力とトルク、トルク計算 動力とトルクの関係が説明でき、動力と回転数と クの関係式を用いて必要な数値が計算できる。 曲げを力と断面係数、モーメントの関係が説明でき、通り応力と断面係数、トルクの関係が説明できる。 ねじりを受ける軸 ねじりを受ける軸 ねじりを受ける軸 ねじりを受ける軸の直径を設計できる。 ねじりを受ける軸の直径を設計できる。 相当ねじりモーメントと相当曲げモーメントの関係が説明でできる。 ねじりを受ける軸の直径を設計できる。 ねじりを受ける軸の直径を設計できる。 ねじり角度と軸長さ、直径、トルクの関係を説明できる。 ねじの角度と神徹を説明できる。 ねじの神力 ねじに加わるトルクと軸力から必要なねじを設計る。 セん断力のかかるねじの設計ができる。 神のの間は ねじに加かるかかるねじの設計ができる。 もので発表を設明できる。 もので発表を設計できる。 もので発表を設明できる。 ものので発表を設明できる。 ものので発表を設明できる。 ものので発表を設明できる。 ものので発表を設明できる。 ものので発表を設明できる。 ものので発表の意味を説明できる。 ものので発表の意味を説明できる。 ものので発表の意味を説明できる。 ものので発表の意味を説明できる。 ものので発表の意味を説明できる。 ものでは無力の作用するを記録できる。 ものでは無力のを記録できる。 ものではまたがまたがまたがまたがまたがまたがまたがまたがまたがまたがまたがまたがまたがま	注意点				講義を終えた時点で	、設計計算演習を実	<u>施する。</u> 日頃た	からしっかり予習、復習をすること。				
□ アクティブラーニング □ ICT 利用 □ 遠隔授業対応 □ 実務経験のある教員による 授業内容 週ごとの到達目標 動力とトルク、トルク計算 動力とトルクの関係が説明でき、動力と回転数と 夕の関係式を用いて必要な数値が計算できる。 ねじりを受ける軸 ねじりを受ける軸の直径を設計できる。 ねじりを受ける軸の直径を設計できる。 相当ねじりモーメントと相当曲げモーメントの関係が説明できる。 ねじりを受ける軸の直径を設計できる。 相当なじりモーメントと相当曲できる。 ねじり角度の計算ができる。 ねじり角度の計算ができる。 ねじの和力とねじり角度の計算ができる。 ねじの和力とねじり角度の計算ができる。 ねじの種類と特徴を説明できる。 ねじの種類と特徴を説明できる。 ねじに加わるトルクと軸力から必要なねじを設計る。 セん断力のかかるねじの設計ができる。 もがり軸受けの種類と特徴を説明できる。 もずり軸受けの種類と特徴を説明できる。 もずり軸受けの寿命を計算できる。 もずり軸受けの寿命を計算できる。 もずりもできる。 もずりをする。 もずりもできる。 もずりもなりをする。 もずりもなりをする。 もずりもなりをする。 もずりもなりをする。 もずりもなりをする。 もずりもなりをする。 もなりをする。 もなり	授業の属	計性・履作										
授業計画 週 授業内容 週ごとの到達目標 1週 動力とトルク、トルク計算 動力とトルクの関係が説明でき、動力と回転数と クの関係式を用いて必要な数値が計算できる。 曲げ応力と断面係数、モーメントの関係が説明で						② 遠隔授業対応		□ 実務経験のある教員による授業				
週 授業内容 週ごとの到達目標 動力とトルク、トルク計算 動力とトルクの関係が説明でき、動力と回転数と	_ , , , ,		-· -	1 - 20. 13/13		1= :						
週 授業内容 週ごとの到達目標 動力とトルク、トルク計算 動力とトルクの関係が説明でき、動力と回転数と	授業計画	 II										
1週 動力とトルク、トルク計算 動力とトルクの関係が説明でき、動力と回転数とクの関係式を用いて必要な数値が計算できる。 連げを受ける軸	ᅶ	4	调	授業内容		[4]	周ごとの到達日	=				
2週					 レク計算	1	動力とトルクの	関係が説明でき、動力と回転数とトル				
出げ応力が計算できる。 ねじりを受ける軸	後期	3rdQ			HIPT		夕の関係式を用いて必要な数値が計算できる。 曲げ応力と断面係数、モーメントの関係が説明でき。					
3週 ねじりを受ける軸												
後期 4週 曲げとねじりを同時に受ける軸 説明でき、曲げとねじりが同時に作用する軸の設できる。 5週 軸の剛性 ねじり角度と軸長さ、直径、トルクの関係を説明できる。ねじり応力とねじり角度の計算ができる。ねじり応力とねじり角度の計算ができる。ねじに加わるトルクと軸力から必要なねじを設計る。 7週 ねじにかかる力 せん断力のかかるねじの設計ができる。軸力の作用するねじの長さを設計できる。リード角と締付けトルクの関係を説明でき、必要付けトルクを計算できる。 8週 中間試験 軸受けの種類と特徴を説明できる。軸対の呼び番号の意味を説明できる。転がり軸受けの寿命を計算できる。 9週 転がり軸受け1 軸受けの呼び番号の意味を説明できる。転がり軸受けの寿命を計算できる。 7日 ラジアル荷重とアキシャル荷重が同時に作用する			3週	ねじりを受ける軸		*	。ねじりを受ける軸の直径を設計できる。					
10日 10			4週	曲げとねじりを同時	寺に受ける軸							
10月 おじの軸力 ねじに加わるトルクと軸力から必要なねじを設計る。			5週	軸の剛性	の剛性 							
7週 ねじにかかる力 軸力の作用するねじの長さを設計できる。			6週	 ねじの軸力				ねじに加わるトルクと軸力から必要なねじを設計でき				
8週 中間試験			7週	 ねじにかかる力	uじにかかる力			軸力の作用するねじの長さを設計できる。 リード角と締付けトルクの関係を説明でき、必要な締				
9週 転がり軸受け 1 軸受けの種類と特徴を説明できる。 軸受けの呼び番号の意味を説明できる。 転がり軸受けの寿命を計算できる。 ラジアル荷重とアキシャル荷重が同時に作用する			8调				1147 I 767 GBH (C.A)					
						 	軸受けの呼び番号の意味を説明できる。					
がの方面を目弁できる。		4thQ	10週	転がり軸受け2	<u></u> 症がり軸受け 2			ラジアル荷重とアキシャル荷重が同時に作用する軸受 けの寿命を計算できる。				
ばねの種類と特徴を説明できる。 11週 ばね要素 1 コイルばねの応力と寸法諸量の関係を説明でき、 を計算できる。			11週	ばね要素 1		-	コイルばねの応力と寸法諸量の関係を説明でき、諸元					

	12週 ばね要 13週 ばね要 14週 管・バ 15週 総合演			要素 2			重ね板ばねの設計ができる。					
				素 3					ーの設計ができ			
				ルブ・シール			配管の種類と特徴を説明できる。 使用圧力から配管の設計ができる。					
							これまでに修得した要素設計法を用いて、様々な機械 要素を組み合わせた設計ができる。					
		16վ		答案返	却							
モデルコア	フカリキ	F 7 =	ラムの	学習[内容と到達	 目標						
分類						学習内容の到達目標				到達レベ	ル 授業週	
,,,,,,			,		学習内容	標準規格の意義を説明できる。					4	
						許容応力	、安全率、疲労破壊	疲労破壊、応力集中の意味を説明できる。			4	
						標準規格	準規格を機械設計に適用できる。					
						ねじ、ボルト・ナットの種類、特徴、用途、規格を理解し、適用 できる。					4	後6
						ボルト・ナット結合における締め付けトルクを計算できる。					4	後6
						ボルトに作用するせん断応力、接触面圧を計算できる。					4	後7
専門的能力						軸の種類と用途を理解し、適用できる。					4	後1
	分野別の専 門工学)専 機械系分類		機械設計	軸の強度、変形、危険速度を計算できる。					4	後1,後2,後 3,後4,後5
						キーの強度を計算できる。					4	後5
						軸継手の種類と用途を理解し、適用できる。					4	後5
						滑り軸受の構造と種類を説明できる。					4	後9
						転がり軸受の構造、種類、寿命を説明できる。					4	後9,後10
						標準平歯車と転位歯車の違いを説明できる。					4	後15
						標準平歯車について、歯の曲げ強さおよび歯面強さを計算できる。					4	後15
					力学	ねじりを受ける丸棒のせん断ひずみとせん断応力を計算できる。					3	後3
						丸棒および中空丸棒について、断面二次極モーメントと極断面係 数を計算できる。					3	後3
						軸のねじり剛性の意味を理解し、軸のねじれ角を計算できる。					3	後5
評価割合												
		定期試験		小テスト		ポートフォリオ	発表・ 勢	取り組み姿	その他	合計	t	
総合評価割合	ì	70			20		0	0		10	100)
基礎的能力		0			0		0	0		0	0	
専門的能力		70			20		0	0		10	100)
分野横断的能力		0			0		0	0		0	0	