Anan College		Year	2024		Course Title	Electrical Circuit Theory 1
Course Information						
Course Code	1312A01			Course Category	Specialized／Compulsory	
Class Format	Lecture			Credits	School Credit： 2	
Department	Course of Electrical Engineering			Student Grade	2nd	
Term	Year－round			Classes per Week	前期： 2 後期： 2	
Textbook and／or Teaching Materials	Introductory electrical circuit，basics（Ohmsha）					
Instructor	Nakamura Yuichi					

Course Objectives

1．Understand the relationship between current，voltage，and resistance using Ohm＇s law，and be able to calculate combined resistance
2．Understand Kirchhoff＇s laws and be able to apply them to DC circuit calculations．
3．Understand Thevenin＇s theorem，superposition theorem，and Millman＇s theorem and be able to apply them to DC circuit calculations．
4．Understand various methods of expressing sine wave alternating current and be able to calculate frequency，phase，effective value，etc．
5．Understand the relationship between sinusoidal AC voltage and current in R, L ，and C elements，and be able to calculate voltage， current，and impedance in a series circuit．

Rubric

	Ideal Level	Standard Level	Minimum achievement level
Achievement 1	Understand Ohm＇s law and be able to calculate the combined resistance of a circuit that combines series and parallel circuits，as well as the current and voltage of each part．	Able to calculate the combined resistance，current，and voltage of each part of a basic circuit according to Ohm＇s law．	Able to calculate the combined resistance，current，and voltage of each part of a simple circuit according to Ohm＇s law．
Achievement 2	By applying Kirchhoff＇s laws， circuit equations for various circuits can be derived and calculations can be performed accurately．	From Kirchhoff＇s laws，circuit equations for basic circuits can be derived and calculations can be performed．	Able to derive circuit equations for simple circuits using Kirchhoff＇s laws and perform calculations．
Achievement 3	Understand Thevenin＇s theorem，superposition theorem，and Millman＇s theorem and be able to apply them to DC circuit calculations．	Able to explain at least two of Thevenin＇s theorem， superposition theorem，and Millman＇s theorem and apply them to calculations．	Able to explain and apply one of Thevenin＇s theorem， superposition theorem，or Millman＇s theorem to calculations．
Achievement 4	Understand the correspondence between sine wave alternating current and trigonometric functions，vectors，and complex numbers，and be able to calculate frequencies，effective values，etc．	Understand the correspondence between sine wave alternating current and trigonometric functions or complex numbers， and be able to calculate frequencies，effective values， etc．	Able to understand and explain the correspondence between sine wave alternating current and trigonometric functions or complex numbers．
Achievement 5	Able to explain the characteristics of R，L，and C elements．Understand，explain， and calculate the relationship between voltage，current，and impedance in a series circuit．	Ability to explain the characteristics of R，L，and C elements． Ability to calculate voltage， current，and impedance of a series circuit．	Able to explain the characteristics of R，L，and C elements．

Assigned Department Objectives

学習•教育到達度目標 D－1

Teaching Method

Outline		The purpose of this course is to acquire the introductory part of electrical circuit theory，which is essential basic knowledge in electrical and electronic engineering．				
Style		The first half deals with DC circuits，which are the basis of electrical circuit theory． Understand Ohm＇s law and Kirchhoff＇s law，and learn how to calculate voltage，current，and resistance in DC circuits． Understand Thevenin＇s theorem，the superposition theorem，and learns about efficient circuit calculations． In the second half，it will be explained the basics of AC circuits． Understand how to express sinusoidal alternating current using trigonometric functions，vectors，and complex numbers，and the concepts of frequency and phase． Learns about the properties of R，L，and C elements and the impedance of series circuits．				
Notice		It is important not only to memorize Ohm＇s law and Kirchhoff＇s law as formulas，but also to fully understand the physical relationships among voltage，current，and resistance． Also，in order to understand AC circuits，you need knowledge about vectors，trigonometric functions，and complex numbers，so review what you learned in mathematics and acquire calculation skills．				
Characteristics of Class／Division in Learning						
\square Active Learning			\square Aided by ICT		\square Applicable to Remote Class	Instructor Professionally Experienced
Course Plan						
			Theme		Goals	
1st Semeste r	1st Quarter	1st	1．DC circuit（1）Current／voltage／resistance		Understand various laws in DC circuits and be able to apply them to calculations． Able to explain the concepts of current，voltage， and resistance．	

		2nd	1. DC circuit (1) Current/voltage/resistance	Understand various laws in DC circuits and be able to apply them to calculations. Able to explain the concepts of current, voltage, and resistance.
		3rd	1. DC circuit (2) Power, energy, Ohm's law, combined resistance	Understand various laws in DC circuits and be able to apply them to calculations. Understand the concept of electric power and electric energy and be able to calculate it. Understand Ohm's law and be able to calculate current, voltage, resistance, and combined resistance.
		4th	1. DC circuit (2) Power, energy, Ohm's law, combined resistance	Understand various laws in DC circuits and be able to apply them to calculations. Understand the concept of electric power and electric energy and be able to calculate it. Understand Ohm's law and be able to calculate current, voltage, resistance, and combined resistance.
		5th	1. DC circuit (3) Kirchhoff's law	Understand various laws in DC circuits and be able to apply them to calculations. Understand Kirchhoff's laws and be able to apply them to DC circuit calculations.
		6th	1. DC circuit (3) Kirchhoff's law	Understand various laws in DC circuits and be able to apply them to calculations. Understand Kirchhoff's laws and be able to apply them to DC circuit calculations.
		7th	1. DC circuit (3) Kirchhoff's law	Understand various laws in DC circuits and be able to apply them to calculations. Understand Kirchhoff's laws and be able to apply them to DC circuit calculations.
		8th	[First semester midterm exam]	Check your understanding of the lesson content up to the mid-term exam of the first semester.
		9th	1. DC circuit (4) Superposition principle	Understand various laws in DC circuits and be able to apply them to calculations. Understand the principle of superposition and be able to apply it to DC circuit calculations.
		10th	1. DC circuit (4) Superposition principle	Understand various laws in DC circuits and be able to apply them to calculations. Understand the principle of superposition and be able to apply it to DC circuit calculations.
		11th	1. DC circuit (5) Thevenin's theorem	Understand various laws in DC circuits and be able to apply them to calculations. Understand Thevenin's theorem and be able to apply it to DC circuit calculations.
	$\begin{array}{\|l\|} 2 \text { nd } \\ \text { Quarter } \end{array}$	12th	1. DC circuit (5) Thevenin's theorem	Understand various laws in DC circuits and be able to apply them to calculations. Understand Thevenin's theorem and be able to apply it to DC circuit calculations.
		13th	1. DC circuit (5) Thevenin's theorem	Understand various laws in DC circuits and be able to apply them to calculations. Understand Thevenin's theorem and be able to apply it to DC circuit calculations.
		14th	1. DC circuit (6) Millman's theorem	Understand various laws in DC circuits and be able to apply them to calculations. Understand Millman's theorem and be able to apply it to DC circuit calculations.
		15th	1. DC circuit (6) Millman's theorem	Understand various laws in DC circuits and be able to apply them to calculations. Understand Millman's theorem and be able to apply it to DC circuit calculations.
		16th	[First semester final exam] [Return of answers]	Check your understanding of the lesson content up to the final exam of the first semester.
		1st	2. Fundamentals of AC circuits (1) Trigonometric functions	Be able to explain the concepts of trigonometric functions, vectors, and complex numbers necessary to express sinusoidal alternating current. Able to explain the trigonometric functions and their graphs necessary to express alternating current.
2nd Semeste r	$\begin{aligned} & \text { 3rd } \\ & \text { Quarter } \end{aligned}$	2nd	2. Fundamentals of AC circuits (1) Trigonometric functions	Able to explain the concepts of trigonometric functions, vectors, and complex numbers necessary to express sinusoidal alternating current. Be able to explain the trigonometric functions and their graphs necessary to express alternating current.
		3rd	2. Fundamentals of AC circuits (2) Representation and calculation methods of complex numbers	Able to explain the concepts of trigonometric functions, vectors, and complex numbers necessary to express sinusoidal alternating current. Understand the complex numbers necessary to express alternating current and be able to perform calculations.

