米子工業高等専門学校		開講年度	令和02年度 (2	020年度)	授業科目	化学 I				
科目基礎情報										
科目番号	0015			科目区分	一般 / 必	修				
授業形態	講義			単位の種別と単位数	複 履修単位:	3				
開設学科	機械工学科			対象学年	1					
開設期	通年			週時間数	3					
教科書/教材	竹内敬人ほか	「化学基礎」、	「化学」東京書籍。	/「ニューグローバル	レ 化学基礎+	化学」東京書籍				
担当教員	田中 晋,竹中	敦司,浦木 勇								
到達日樺										

|到连日倧

- (1) 物質の性質や変化を原子・分子の微視的な視点から説明できる(2) 物質量などの概念を理解し、論理的に量的関係を計算できる(3) 三態相互の変化を粒子的観点で説明できる(4) 中和反応・酸化還元反応などの化学反応に関する基本的事項を説明できる(5) 気体、溶液の性質に関する基本的な計算ができる

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安
評価項目1	物質の性質や変化を原子・分子の	物質の性質や変化を原子・分子の	物質の性質や変化を原子・分子の
	微視的な視点から説明できる	微視的な視点からほぼ説明できる	微視的な視点から説明できない
評価項目2	物質量などの概念を理解し、論理 的に量的関係を計算できる	おおむね物質量などの概念を理解 し、量的計算ができる	物質量などの概念を理解できない
評価項目3	三態相互の変化を粒子的観点で説	三態相互の変化を粒子的観点でほ	三態相互の変化を粒子的観点で説
	明できる	ば説明できる	明できない
評価項目4	中和反応・酸化還元反応などの化	中和反応・酸化還元反応などの化	中和反応・酸化還元反応などの化
	学反応に関する基本的事項を説明	学反応に関する基本的事項をほぼ	学反応に関する基本的事項を説明
	できる	説明できる	できない
評価項目5	気体,溶液の性質に関する基本的	気体,溶液の性質に関する基本的	気体,溶液の性質に関する基本的
	な計算ができる	な計算がほぼできる	な計算ができない

学科の到達目標項目との関係

学習・教育到達度目標 A

教育方法等

3/113/3/24/3	
概要	我々の身の周りには様々な物質があり、工学分野においては材料の性質を正確に把握して、それぞれの場面に適した物質を利用する必要があるため、物質に関する知識は必須のものである。基礎化学では、技術者としてはもちろん、一般教養としても欠かせない、基礎的な化学知識を学び、基礎力を養うことで、2年次以降に設置されている専門科目に取り組める力をつける。実験は物質工学基礎実験では行わないテーマに取り組み、化学現象についての理解を深める。身近な化学物質の性質を知り、これらが自然環境へ及ぼす影響を考えることで、環境化学分野での倫理力も養いたい。
授業の進め方・方法	座学が中心となるが、理解を深めるため、授業時間の2割程度を演習にあてる。さらに4回の学生実験により実際の化学現象を観察し、実験結果をプリントに記入し、レポートとして提出する、定期試験以外に4回小テストを行い、理解力を養う、オフィスアワーは別途掲示等で知らせる(原則として木曜日放課後)。オフィスアワー以外の放課後、休憩時間にも可能であれば質問を受け付ける。
注意点	授業での到達目標が達成され、化学に関する基礎的な概念や法則が習得できたかを評価する。成績は定期試験、実験レポート、小テストをもとに総合的に評価する。 評価点は定期試験(70%)+実験レポート(20%)+小テスト(10%)の割合で算出する。

授業計画

		週	授業内容	週ごとの到達目標
		1週	修学ガイダンス、化学と人間生活	化学と人間生活の関係において金属、プラスチックの 用途や、化学物質の有効性や環境リスクを説明できる 。
		2週	純物質と混合物、化合物と元素、物質の三態	純物質と混合物、化合物と元素について説明できる。 物質の三態を知っている。
		3週	物質の三態、原子の構造/学生実験「混合物の分離」	物質の三態および原子の構造について説明できる。
	1.0+0	4週	元素の周期律と元素の性質	元素の周期律と元素の性質について説明できる。
	1stQ	5週	イオンとイオン結合、共有結合	イオンの生成とイオン結合、および共有結合について 説明できる。
		6週	配位結合、分子間力	配位結合について理解している。分子間力について説明できる。
		7週	金属結合と金属結晶の構造/学生実験「結晶の電気伝導」	金属結合と金属結晶の構造について説明できる。
前期		8週	化学結合と物質の分類・用途	化学結合と物質の分類・用途について説明できる。
		9週	前期中間試験までの復習(前期中間試験)	前期中間試験までの学習内容を理解する。
		10週	原子量・分子量・式量	原子の相対質量や原子量・分子量・式量について説明 できる。
		11週	物質量	物質量について説明できる。
		12週	物質量、溶液の濃度	物質量や濃度を理解し、基本的な計算ができる。
	2ndQ	13週	化学反応式と量的関係/学生実験「分子量の測定」	化学反応式の表す意味を理解し、化学反応式を書くこ とができる。
		14週	化学反応式と量的関係/化学の基本法則と原子説・分 子説	化学反応式を使った基本的な計算ができる。化学の基本法則を説明できる。
		15週	前期末試験	前期末試験までの学習内容を説明できる。
		16週	前期末までの復習	前期末までに習った内容について, 自らの課題を認識 し修正できる。
後期	3rdQ	1週	水素イオン濃度とpH、酸と塩基	酸と塩基を説明でき、水素イオン濃度とpHの関係を理解し、基本的な計算ができる。

		2週		中和反	え応と塩の生	成、中和滴定	塩の生成を含め中和反応を説明でき、中和滴定の基本 的な計算ができる。				
		3週		酸化と	上還元		酸化と還元について説明できる。				
		4週		酸化剤	別と還元剤		酸化数、酸化剤と還元剤につ	いて説明でき	き る。		
		5週		金属の	金属の酸化還元反応、イオン。				/化列について説明できる		
		6週		電池			電池の原理やダニエル電池、きる。	鉛蓄電池にて	いて説明で		
		7週		電池、	電気分解		一次電池、二次電池について 原理を説明できる。	説明できる。	電気分解の		
		8週		後期中	中間試験までの	の復習(後期中間試験)	後期中間試験までの学習内容	を説明できる	,)		
		9週		電気分	}解/学生実	験「電気分解」	電気分解の基本的な計算がで	·きる。			
		10ì	直	物質の	D三態、状態	変化	物質の状態変化を粒子運動から説明できる。				
		11ì	<u> </u>	気体の	D性質、気体の	の状態方程式	気体の性質を説明し、ボイルーシャルルの法則や気体 の状態方程式、分圧について基本的な計算ができる。				
		12ì	<u> </u>	固体・	・気体の溶解	度、再結晶	固体の溶解度や再結晶の原理を説明し、基本的な計算ができる。へスの法則を説明できる。				
	4thQ 13週		蒸気圧	E降下と沸点.	上昇、浸透圧、コロイド	蒸気圧降下と沸点上昇、浸透圧について説明し、基本 的な計算ができる。コロイドについて説明できる。					
		14ì	<u> </u>	反応熱と熱化学方程		程式、ヘスの法則	反応熱を理解し、熱化学方程式を作ることができる。 へスの法則を使った基本的な反応熱の計算ができる。				
		15ì	<u></u>	学年末	k試験までの		学年末試験までの学習内容を理解する。				
		16ì	<u> </u>	学年末	までの復習		学年末までに習った内容について, 自らの課題を認識 し修正できる。				
モデルニ]アカリコ	Fユ -	ラムの)学習	内容と到達	隆目標					
分類			分野		学習内容	学習内容の到達目標		到達レベル	授業週		
						代表的な金属やプラスチックなど有 用途、また、その再利用など生活と る。	機材料について、その性質、 のかかわりについて説明でき	1	前1		
						洗剤や食品添加物等の化学物質の有 て説明できる。	効性、環境へのリスクについ	1	前1		
						物質が原子からできていることを説	明できる。	1	前1		
						単体と化合物がどのようなものか具	体例を挙げて説明できる。	1	前1		
						同素体がどのようなものか具体例を	挙げて説明できる。	1	前1		
						純物質と混合物の区別が説明できる	•	1	前1		

<u>こっ /レコッ</u> 分類	コアカリキュラムの学習内容と到達目 分野 学習内容 学		学習内容	- 10 10 10 10 10 10 10 10 10 10 10 10 10	到達レベル	授業週	
<u>刀块</u>		/JJまj	子省內各	子首内谷の到達日標 代表的な金属やプラスチックなど有機材料について、その性質、 用途、また、その再利用など生活とのかかわりについて説明できる。		前1	
				300 洗剤や食品添加物等の化学物質の有効性、環境へのリスクについ て説明できる。	1	前1	
				物質が原子からできていることを説明できる。	1	前1	
				単体と化合物がどのようなものか具体例を挙げて説明できる。 1		1	前1
				1	前1		
				純物質と混合物の区別が説明できる。	1	前1	
				混合物の分離法について理解でき、分離操作を行う場合、適切な 分離法を選択できる。	1	前1	
				物質を構成する分子・原子が常に運動していることが説明できる。	1	前2	
				水の状態変化が説明できる。	1	前2	
				物質の三態とその状態変化を説明できる。	1	前2,後10	
				ボイルの法則、シャルルの法則、ボイル-シャルルの法則を説明 でき、必要な計算ができる。	1	後11	
				気体の状態方程式を説明でき、気体の状態方程式を使った計算ができる。	1	後11	
				原子の構造(原子核・陽子・中性子・電子)や原子番号、質量数を 説明できる。	1	前3	
				同位体について説明できる。	1	前3	
基礎的能力	自然科学	 化学(一般)	 化学(一般)	放射性同位体とその代表的な用途について説明できる。	1	前3	
全がたい。月ピノノ	口然們才	\(\frac{10\frac{1}{10}}{10}\)		原子の電子配置について電子殻を用い書き表すことができる。	1	前3	
				価電子の働きについて説明できる。	1	前3	
				原子のイオン化について説明できる。	1	前5	
				代表的なイオンを化学式で表すことができる。	1	前5	
				原子番号から価電子の数を見積もることができ、価電子から原子 の性質について考えることができる。	1	前4	
				元素の性質を周期表(周期と族)と周期律から考えることができる。	1	前4	
				イオン式とイオンの名称を説明できる。	1	前5	
				イオン結合について説明できる。	1	前5,前8	
				イオン結合性物質の性質を説明できる。	1	前5	
				イオン性結晶がどのようなものか説明できる。	1	前5	
				共有結合について説明できる。	1	前5,前8	
				構造式や電子式により分子を書き表すことができる。	1	前5	
				自由電子と金属結合がどのようなものか説明できる。	1	前7	
				金属の性質を説明できる。	1	前7,前8	
				原子の相対質量が説明できる。 天然に存在する原子が同位体の混合物であり、その相対質量の平 均値として原子量を用いることを説明できる。	1	前10 前10	
				アボガドロ定数を理解し、物質量(mol)を用い物質の量を表すことができる。	1	前11,前12	
				分子量・式量がどのような意味をもつか説明できる。	1	前11	

				気体の体積と物質	 量の関係を説明で	 きる。		1	前12	
					化学反応を反応物きる。	、生成物、係数を	理解して組み立てる	ことがで	1	前13,前14
				化学反応を用いて	 化学量論的な計算	 ができる。		1	前13,前14	
				電離について説明	でき、電解質と非	電解質の区別ができ	 る。	1	前12	
				質量パーセント濃 できる。	度の説明ができ、	質量パーセント濃度	の計算が	1	前12	
				モル濃度の説明が	でき、モル濃度の	計算ができる。		1	前12	
				酸・塩基の定義(こ	ブレンステッドまで	ご)を説明できる。		1	後1	
				酸・塩基の化学式	から酸・塩基の価	数をつけることがで	:ea。	1	後1	
				電離度から酸・塩	基の強弱を説明で	きる。		1	後1	
				pHを説明でき、p 素イオン濃度をph	Hから水素イオン) Hに変換できる。	農度を計算できる。	また、水	1	後1	
				中和反応がどのよ	うな反応であるか	説明できる。		1	後2	
				中和滴定の計算が	できる。			1	後2	
				酸化還元反応につ	いて説明できる。			1	後3,後4	
				イオン化傾向につ	いて説明できる。			1	後5	
				金属の反応性につ	いてイオン化傾向	に基づき説明できる)	1	後5	
				ダニエル電池につ	いてその反応を説	明できる。		1	後6	
				鉛蓄電池について	その反応を説明で	きる。		1	後6	
				一次電池の種類を	説明できる。			1	後7	
				二次電池の種類を	説明できる。			1	後7	
				電気分解反応を説				1	後7	
				電気分解の利用とサイクルへの適用る。	して、例えば電解 など、実社会にお	めっき、銅の精錬、 ける技術の利用例を	金属のリ説明でき	1	後9	
					ファラデーの法則		1	後9		
				実験の基礎知識(安理整頓)を持ってい	全防具の使用法、 いる。	薬品、火気の取り	汲い、整	1	前3	
				事故への対処の方、対応ができる。	を理解し	1	前3			
				測定と測定値の取	1	前7,前 13,後9				
		化学実験	化学実験	有効数字の概念・測定器具の精度が説明できる。				1	前7,前 13,後9	
				レポート作成の手順を理解し、レポートを作成できる。				1	前3,前7,前 13,後9	
				ガラス器具の取り	扱いができる。			1	前3,前7,前 13,後9	
				基本的な実験器具に関して、目的に応じて選択し正しく使うこと ができる。				1	前3,前7,前 13,後9	
				代表的な気体発生	の実験ができる。			1	前13	
評価割合			-							
	試験		 発表	相互評価	態度	ポートフォリオ	その他	合計		
総合評価割合	80		0	0	0	0	20	100		
基礎的能力	80		0	0	0	0	20	100)	
専門的能力	0		0	0	0	0	0	0		
分野横断的能力	0		0	0	0	0	0	0		