	川高等専	門学校	開講年度 令和02年度((2020年度) 排	受業科目	機械要素設計Ⅰ		
科目基礎 科目番号	2111年報	200106		科目区分	専門 / 必修	×		
4日留亏 受業形態		授業		単位の種別と単位数	等F7 / 必修 履修単位:			
報設学科			科(2018年度以前入学者)	対象学年	3	》中 位,1		
<u>記述 </u>		前期	11 (2010 2010)	週時間数	2			
対書/教	材	林則行 他	也「機械設計法」 森北出版(株)		•			
⊒当教員		徳田 太良	В					
到達目標								
. 機械設 . 締結機 . 機械設 . 製造業	計に必要な 機械要素の強 計と各構成 ぎにおける図	は規格を理解 強度計算がで 対要素の相互 図面の役割を	し, 適用できる。 きる。 関係を説明できる。 説明できる。					
レーブリ	ノック							
			理想的な到達レベルの目安		標準的な到達レベルの目安未到達レベルの目安			
適用で	きる。	は規格を理解	について説明できる。	項と規格について説明	できる。	機械設計で考慮すべき基本的な調度と規格について説明できない。		
締結機 る。	機械要素の強	強度計算ができ	き 断面強度に模型を使って実践し , 断面に発生する応力をよく理解 して応力計算ができる。	断面強度に模型を使って実践し , 断面に発生する応力を理解して 応力計算ができる。		断面強度に模型を使って実践し , 断面に発生する応力を理解して 応力計算ができない。		
8. 機械設 系を説明		戈要素の相互	理解し選定できる。	し選定できる。				
. 製造業 月できる。		図面の役割を	説 製造業における図面の流れと役割をよく理解し,その概要を説明できる。	製造業における図面のを理解し、その概要を	が流れと役割 :説明できる 	製造業における図面の流れと役害を理解し、その概要を説明できたい。		
学科の至	到達目標耳	項目との関	係					
学習・教育	育到達度目	標 B-3						
教育方法	去等							
腰			、機械工作法、材料力学、工業力学、					
受業の進む	め方・方法	機械要素	解説をした後,具体的な設計課題の液が、どの様な目的で使用されるかを実 実習し,各自の理解度を深める。 適覧	際の企業での使用例を挙げ	げ解説する。	応力の項ではグループに分かれ模型		
主意点		レポート	は評価対象として記録を残すため, 必	必ず提出すること。				
受業計画	<u> </u>							
		週	授業内容	週ご	との到達目標			
前期	1stQ	1週	0. ガイダンス 1. 概論 (1)機械設計の考え方	機械調	機械設計に必要な事項を説明できる。			
		2週	1. 概論 (2)許容応力	許容原	許容応力について理解し,計算できる。			
		3週	 規則 規格,単位系,標準数 材料力学の基礎 	,		単位系,標準数を説明でき,適用できる。		
		4週	(1) 応力	ひずる	ひずみと応力について計算できる。			
		5週	3. 材料力学の基礎 (2) 断面強度実習1	断面(断面にかかる力とモーメントを説明できる。			
		6週	3. 材料力学の基礎 (2) 断面強度実習2		実験する断面形状を決定できる。			
		7週	3. 材料力学の基礎 (2) 断面強度実習3 3. 材料力学の基礎	断面	断面強度実験ができる。			
		8週	 材料力学の基礎 (3) 断面強度特性 締結要素 	断面	断面強度実験の結果から断面強度特性が考察できる。			
	2ndQ	9週	4. 締結要系 (1) ねじ1 4. 締結要素	ねじ	ねじの規格と基本事項が説明できる。			
		10週	4. 神福安系 (1) ねじ2 4. 締結要素		ねじの強度計算ができる。			
		11週	(2) リベット		リベットの強度計算ができる。			
		12週	4. 締結要素 (3) 溶接		溶接継手の強度計算ができる。			
		13週	5. 機械設計と図面の関係 6. 機械と知財戦略 また。 乗用 また		機械設計と図面の関係について説明できる。 特許,実用新案,意匠.商標について説明できる。			
		~-	特許,実用新案,意匠. 商標	1201	企業における機械設計の実例を理解し、説明できる。			
		15週	7. 機械設計の実際	企業(こおける機械	設計の実例を理解し、説明できる。		
		15週	7. 機械設計の実際 企業における機械設計の実例 前期末試験	企業(こおける機械	設計の実例を理解し,説明できる。		

専門的能力	分野別の専 門工学	機械系分野		標準規格の意義を記	兑明できる。		4	前1,前2,前 3,前4,前 5,前6,前 7,前8				
				許容応力、安全率、	疲労破壊、応力集中の意味を説明で	きる。	4	前1,前2,前 3,前4,前 5,前6,前 7,前8				
			機械設計	標準規格を機械設計に適用できる。			4	前1,前2,前 3,前4,前 5,前6,前 7,前8				
				ねじ、ボルト・ナットの種類、特徴、用途、規格を理解し、適用できる。		4	前9,前 10,前13					
				ボルト・ナット結合における締め付けトルクを計算できる。			4	前10,前13				
				ボルトに作用するせん断応力、接触面圧を計算できる。			4	前11,前13				
評価割合												
			試験		ポートフォリオ	合計						
総合評価割合	<u> </u>		80		20	100						
1. 機械設計, 適用できる	に必要な規格 る。	を理解し	20		5	25						
2. 締結機械 る。	要素の強度計	算ができ	20		5	25						
3. 機械設計係を説明でき	と各構成要素 きる。	の相互関	20		5	25						
4. 製造業に明できる。	おける図面の	役割を説	20		25							
			0		0 0							