Kure Coll	ege	Year	2016		Course Title	電磁界理論		
Course Information								
Course Code	0036			Course Category	Specializ	Specialized / 選択必修		
Class Format	Lecture			Credits	Academi	Academic Credit: 2		
Department	Electrical Engineering and Information Science			Student Grade	5th	5th		
Term	First Semester			Classes per Weel	< 2	2		
Textbook and/or Teaching Materials								
Instructor	Kuroki Futoshi							
Course Objective	es							

- 1. 周波数に対する電磁波の分類とその名称が説明できる。 2. マックスウェルの方程式の物理的意味が説明できる。 3. 電磁界の境界条件が導出できる。 4. ポインティングベクトルの物理的意味が説明できる。

- 5. 自由空間を伝搬する平面波の電磁界が導出できる。 6. 自由空間を伝搬する平面波を伝送線路モデルで等価変換できる。 7. スネルの法則を導くことが出来る。 8. 境界面における平面波の振る舞いが説明できる。

	n	

T CODITO							
	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安				
評価項目1	マックスウェルの方程式の物理的 意味が適切に説明できる。	マックスウェルの方程式の物理的 意味が説明できる。	マックスウェルの方程式の物理的 意味が説明できない				
評価項目2	自由空間を伝搬する平面波を伝送 線路モデルで等価変換が適切にで きる	自由空間を伝搬する平面波を伝送 線路モデルで等価変換できる	自由空間を伝搬する平面波を伝送 線路モデルで等価変換できない				
評価項目3	境界面における平面波の振る舞い が適切に説明できる	境界面における平面波の振る舞い が説明できる	境界面における平面波の振る舞い が適切に説明できない				

Assigned Department Objectives

Teaching Method

Outline	電磁界理論の基礎を習得するとともに、電磁波伝搬やアンテナの概要、実用に供されている電磁波システムなどを把握することを目標とする。本授業では電磁界理論に関する基礎学力を身につけることができる。
Style	講義を基本とし、適宜課題を実施する。
Notice	授業内容で不明な点あれば放課後、土日曜日等を利用して随時質問すること。なお研究室はセキュリティのため常時施錠しているが、行先表示板が「在室」であれば、教官室に電話すること。また電気情報工学科棟は土日・祝祭日は施錠されているが、担当教官は出張時以外は在室しているので、電話連絡のこと。

Course Plan

			Theme	Goals			
	1st Quarter	1st	電磁波の分類と名称	電磁波の分類と名称が説明できる。			
		2nd	マックスウェルの方程式	クーロンカ、電界と電位の定義、ガウスの法則が積分 形から説明できる。			
		3rd	マックスウェルの方程式	ファラディーの法則、アンペア・マクスウェルの法則 が積分形から説明できる。			
		4th	マックスウェルの方程式	積分形で示されたマックスウェルの方程式から電磁界 の境界条件が導出できる。			
		5th	マックスウェルの方程式	微分形で示されたマックスウェルの方程式が導出でき る。			
		6th	マックスウェルの方程式	ポインティングベクトルと電磁エネルギーの関係が説 明できる。			
1st		7th	中間試験	合格点を取る。			
Semeste		8th	答案返却・解答説明	中間試験問題の理解を深める。			
l r	2nd Quarter	9th	マックスウェルの方程式	ヘルムホルツの方程式が導出できる。			
		10th	電磁波の伝搬	自由空間中を伝搬する平面波の電磁界が導出できる。			
1		11th	電磁波の伝搬	直線偏波、円偏波の概念が説明できる。			
		12th	電磁波の伝搬	異なった媒質からなる境界面への平面波の振る舞いを 解析できる。			
		13th	電磁波の伝搬	異なった媒質からなる境界面における平面波の反射、 屈折、透過の法則(スネルの法則)が導出できる。			
		14th	電磁波の伝搬	異なった媒質からなる境界面に入射した平面波の特異 現象が説明できる。			
		15th	答案返却・解答説明	期末試験内容の理解を深める。			
		16th					

Evaluation Method and Weight (%)

	試験	発表	相互評価	態度	ポートフォリオ	その他	Total
Subtotal	80	0	0	0	20	0	100
基礎的能力	0	0	0	0	0	0	0
専門的能力	80	0	0	0	20	0	100
分野横断的能力	0	0	0	0	0	0	0